当前位置:首页 > 复变和积分变换 > 正文内容

8.复数的求导与解析

chanra1n4年前 (2019-12-26)复变和积分变换6564

我们先来回忆一下一般函数的求导

1.C'=0(C为常数);

2.(Xn)'=nX(n-1) (n∈R);

3.(sinX)'=cosX;

4.(cosX)'=-sinX;

5.(aX)'=aXIna (ln为自然对数);

6.(logaX)'=1/(Xlna) (a>0,且a≠1);

7.(tanX)'=1/(cosX)2=(secX)2

8.(cotX)'=-1/(sinX)2=-(cscX)2

9.(secX)'=tanX secX;

10.(cscX)'=-cotX cscX;


复数的求导可以分开实数和虚数部分

(z)'=(u+vi)'=udx+vdxi

eg:

z=x+y+xyi

u=x+y    v=xy

u'=1    v'=y

(z)'=1+yi


eg:

z=Lnz

(z)'=1/z    ->可以对照上面一般函数求导

z=πiz3

(z)'=3πiz2


解析->函数在某点和某领域内处处可导


解析->可导->连续->有极限

推导是单向的,反过来就不行!


函数可导与解析的区域计算

可导->满足以下两个条件

1    u'x=v'y

2    u'y=-v'x

在所以满足条件的解内可导


解析->若可导的情况下满足以下条件

1    x=x

2    y=y

则函数在(x,y)内解析,其他部分不解析

扫描二维码推送至手机访问。

版权声明:本文由我的FPGA发布,如需转载请注明出处。

本文链接:https://www.myfpga.cn/index.php/post/91.html

分享给朋友:

“8.复数的求导与解析” 的相关文章

4.三角式、代数式、指数式转换

4.三角式、代数式、指数式转换

简洁明了,直接看公式:代数式:z=a+bi三角式:z=r(cosθ+isinθ)   其中r=|z|指数式:z=reiθ例如:z=2+i 求其三角式和指数式r=|z|=51/2θ=arctan1/2=π/6即三角式为z=51/2(cos30°+isin30°)指数式为z=51/2...

5.常规方程和复数方程的转换

5.常规方程和复数方程的转换

ax+by=c,求改直角坐标方程的复数形式令x=(z+z*)/2y=(z-z*)/2i带入ax+by=c→a(z+z*)/2+b(z-z*)/2i=cz=a+bi,求该复数方程关于x,y的参数方程形式x=Re(z)y=Im(z)存在关于x、y的参数方程,求对应的复数形式方程x=fx(x)y=fy(y...

11.复数级数及其相关计算

11.复数级数及其相关计算

在复数的级数判断收敛和发散中,需要进行两步判断1、当n趋近于∞时,实部和虚部同时趋近于02、实部级数和虚部级数同时收敛只有同时满足两个条件的函数,才是级数收敛的,否则都是发散的倘若难以使用以上两条,可以使用带入的方法,如下(1)eg:解:(1)(2)   (3)(4)性...

12.留数和留数定理

12.留数和留数定理

奇点分为孤立奇点和非孤立奇点孤立奇点分为:本性奇点,可去奇点,极点非孤立奇点->Ln(x)、ln(x) x≤0本性奇点->若不存在极限 则为本性奇点(简单地说,看起来比较复杂的函数,例如cosz/(z-3))可去奇点->将奇点带入函数式,若分子分母为同次方,则为可去奇点 例如f(z...