
Security User Guide
Intel FPGA Programmable Acceleration Card
N3000 Variants

Online Version

Send Feedback UG-20261

ID: 683519

Version: 2020.09.08

https://www.intel.com/content/www/us/en/docs/programmable/683519/current/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Overview.. 3
1.1. About This Document...3
1.2. Prerequisites...3
1.3. Related Documentation.. 3
1.4. Glossary...4

2. Intel FPGA PAC Security Features... 6
2.1. Secure Image Updates... 7
2.2. Anti-Rollback Capability..9
2.3. Key Management...9
2.4. Authentication...10
2.5. Encryption.. 11

3. Intel FPGA PAC Security Flow... 12
3.1. Installing PACSign..14
3.2. PACSign Tool...15
3.3. Creating Unsigned Images ... 16
3.4. Using an HSM Manager...17
3.5. Creating Keys..17

3.5.1. OpenSSL Key Creation..17
3.5.2. HSM Key Creation.. 18

3.6. Root Entry Hash Bitstream Creation ...20
3.7. Signing Images... 21
3.8. Creating a CSK ID Cancellation Bitstream ...22
3.9. PACSign PKCS11 Manager *.json Reference...23
3.10. Creating a Custom HSM Manager... 24

3.10.1. HSM_MANAGER.get_public_key(public_key).. 25
3.10.2. HSM_MANAGER.sign(data, key)... 26
3.10.3. Signing Operation Flow... 27

3.11. PACSign Man Page... 27
3.12. Accessing Intel FPGA PAC N3000 Version and Authentication Information 29

3.12.1. Using fpgainfo security Command.. 30
3.12.2. Reading sysfs Files for Identifying Information... 31
3.12.3. Using bitstreaminfo Tool.. 32

4. Using fpgasupdate.. 35
4.1. Troubleshooting... 36

5. Document Revision History for Security User Guide.. 40

A. bitstreaminfo Tool Examples..41

Contents

Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Overview

1.1. About This Document

Reference this user guide to understand and enable the security features such as Root
of Trust (RoT) and FPGA static region (SR) user image signing for all Intel FPGA
Programmable Acceleration Card N3000 variations:

• Intel® FPGA PAC N3000-1

• Intel FPGA PAC N3000-2

• Intel FPGA PAC N3000-N

Note: The Intel Arria® 10 in the Intel FPGA PAC N3000 contains a static image. No partial
reconfiguration is supported. Thus, any references to FPGA SR image, flat image, or
AFU image in context of an Intel FPGA PAC N3000 design is part of the static FPGA
design.

Note: References to Intel FPGA PAC N3000 in this document apply to all three variants
unless otherwise specified.

1.2. Prerequisites

You must ensure that the host and the Intel FPGA PAC N3000 are using the current
version of OPAE tools. Please refer to the latest versions of the Intel Acceleration
Stack User Guide: Intel FPGA Programmable Acceleration Card N3000 and Intel
Acceleration Stack User Guide: Intel FPGA Programmable Acceleration Card N3000-N
for directions on how to determine if you have the current version of tools.

Related Information

• Intel Acceleration Stack User Guide: Intel FPGA Programmable Acceleration Card
N3000

• Intel Acceleration Stack User Guide: Intel FPGA Programmable Acceleration Card
N3000-N

1.3. Related Documentation

Refer to the following documentation while using this guide:

683519 | 2020.09.08

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/xgz1560360700260.html#xeu1570719737646
https://www.intel.com/content/www/us/en/programmable/documentation/xgz1560360700260.html#xeu1570719737646
https://www.intel.com/content/www/us/en/programmable/documentation/zsf1588015530773.html#xsa1588016528011
https://www.intel.com/content/www/us/en/programmable/documentation/zsf1588015530773.html#xsa1588016528011
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Table 1. Related Documentation

Document Description

Intel Acceleration Stack User Guide: Intel FPGA
Programmable Acceleration Card N3000

Describes how to install and update OPAE and FPGA SR user
image.

Intel Acceleration Stack User Guide: Intel FPGA
Programmable Acceleration Card N3000-N

Intel FPGA Programmable Acceleration Card N3000 Board
Management Controller User Guide

Details features of the board management controller (BMC)
not related to security, such as sensor monitoring through
PLDM commands.

Intel FPGA Programmable Acceleration Card N3000-N Board
Management Controller User Guide

1.4. Glossary

Table 2. Glossary

Acronym/Term Expansion Description

AFU Accelerator Functional Unit Hardware Accelerator implemented in FPGA logic
which offloads a computational operation for an
application from the CPU to improve performance.

CCI-P Core Cache Interface CCI-P is the standard interface AFUs use to
communicate with the host.

CSK Code Signing Key A key used to validate integrity and authenticity of a
block of code. Authenticity of this key is established
through signing with a root key.

ECDSA Elliptical Curve Digital Signature
Algorithm

An algorithm based on elliptic curve cryptography to
create signatures that can be used to evaluate the
authenticity of an object.

FIU FPGA Interface Unit FIU is a platform interface layer that acts as a bridge
between platform interfaces like PCIe* and AFU-side
interfaces such as CCI-P.

FIM FPGA Interface Manager The FPGA functional block containing the FPGA
Interface Unit (FIU) and external interfaces for
memory, networking, etc.
The FIM may also be referred to as BBS (Blue-Bits,
Blue Bit Stream) in the Acceleration Stack installation
directory tree and in source code comments.
The Accelerator Function (AF) interfaces with the FIM
at run time.

HSM Hardware Security Module A secure hardware device to hold, protect, and allow
access to cryptographic objects; performs
cryptographic operations in a trusted environment.

NIST p Curve National Institute of Standards and
Technology prime Curve

P256 is used throughout this document. Without any
other associations added, P256 means NIST P256
curves, where p is a 256-bit prime.

OPAE Open Programmable Acceleration
Engine

The OPAE is a software framework for managing and
accessing AFs.

PACSign PAC image signing tool A standalone tool to manage root entry hash
bitstream creation, image signing, and cancellation
bitstream creation

PKCS Public Key Cryptography Standard PKCS#11 is used throughout this document.
PKCS#11 is a commonly used interface for
commercial hardware security modules (HSMs).

continued...

1. Overview

683519 | 2020.09.08

Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

Send Feedback

4

https://www.intel.com/content/www/us/en/programmable/documentation/xgz1560360700260.html
https://www.intel.com/content/www/us/en/programmable/documentation/xgz1560360700260.html
https://www.intel.com/content/www/us/en/programmable/documentation/zsf1588015530773.html
https://www.intel.com/content/www/us/en/programmable/documentation/zsf1588015530773.html
https://www.intel.com/content/www/us/en/programmable/documentation/ank1549309359963.html
https://www.intel.com/content/www/us/en/programmable/documentation/ank1549309359963.html
https://www.intel.com/content/www/us/en/programmable/documentation/saw1585270376971.html
https://www.intel.com/content/www/us/en/programmable/documentation/saw1585270376971.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Acronym/Term Expansion Description

PR Partial Reconfiguration The ability to dynamically reconfigure a portion of an
FPGA while the remaining FPGA design continues to
function.

Root Key - A key designated as the primary, constant value for
authentication. Typically only used to sign other keys,
forming the root of all key chains.

RoT Root of Trust A source that can be trusted, such as the TCM in the
Intel FPGA PAC.

RSU Remote System Update Ability to update firmware and FPGA bitstreams over
PCIe.

SR Static Region Portion of the FPGA design that does not change.

1. Overview

683519 | 2020.09.08

Send Feedback Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Intel FPGA PAC Security Features
The Intel MAX® 10 board management controller (BMC) acts as a Root of Trust (RoT)
and enables the secure update features of the Intel FPGA PAC. The RoT includes
features that may help prevent the following:

• Loading or executing of unauthorized code or designs.

• Disruptive operations attempted by unprivileged software, privileged software, or
the host BMC.

• Unintended execution of older code or designs with known bugs or vulnerabilities
by enabling the BMC to revoke authorization.

The Intel FPGA PAC BMC also enforces several other security policies relating to access
through various interfaces, as well as protecting the on-board flash through write rate
limitation.

Note: The terms BMC or BMC RoT refer to the Intel FPGA PAC's Intel MAX 10 BMC (as
opposed to another BMC, such as the host or motherboard BMC) unless otherwise
noted.

The BMC verifies Intel MAX 10 BMC Nios® firmware and Intel MAX 10 FPGA images

The Intel FPGA PAC N3000 BMC RoT is programmed with Intel root entry hashes for
BMC firmware, and BMC RTL images during a one-time secure update (OTSU) to
preproduction units or at manufacturing, but does not contain a root entry hash for
AFUs.

Note: This operation cannot be reversed, and after this operation, AFUs without correct
signatures are refused by the Intel FPGA PAC N3000 Intel MAX 10 RoT. A correct
signature is one created by a Code Signing Key (CSK) that is both signed by the root
key and not yet canceled.

In cases where you have a pre-security production Intel FPGA PAC, you must perform
a one-time secure update. For more information, refer to Appendix B Section B.2:
Upgrading from 1.1 Alpha-2 or Older to Production Version in the Intel Acceleration
Stack User Guide: Intel FPGA Programmable Acceleration Card N3000.

Related Information

• Intel Acceleration Stack User Guide: Intel FPGA Programmable Acceleration Card
N3000

• Intel Acceleration Stack User Guide: Intel FPGA Programmable Acceleration Card
N3000-N

683519 | 2020.09.08

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/xgz1560360700260.html#xeu1570719737646
https://www.intel.com/content/www/us/en/programmable/documentation/xgz1560360700260.html#xeu1570719737646
https://www.intel.com/content/www/us/en/programmable/documentation/zsf1588015530773.html#xsa1588016528011
https://www.intel.com/content/www/us/en/programmable/documentation/zsf1588015530773.html#xsa1588016528011
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

2.1. Secure Image Updates

The Intel MAX 10 BMC RoT requires that all BMC Nios firmware and Intel MAX 10 FPGA
images are authenticated using ECDSA before loading and executing on the card. The
RoT achieves this by storing a root entry hash bitstream for the corresponding image
in a write-once location and subsequently verifying the signature of the image against
the hash. Intel provides the root entry hash for the BMC Nios firmware and Intel MAX
10 FPGA images. You create and program the root entry hash bitstream for your FPGA
SR user image. Until you program the FPGA SR user image root entry hash bitstream,
the Intel FPGA PAC does not authenticate an FPGA SR user image prior to loading and
executing the image.

Table 3. Keys and Authentication

Root Key Origin Used to Authenticate

Intel MAX 10 BMC root key Intel Intel MAX 10 Images and Firmware

FPGA static region (SR) root key Customer FPGA SR User Images

When you are in the development or validation phase and have not programmed your
root entry hash bitstream, you create a FPGA SR user image that contains the
appropriate headers but is not signed using keys. This process is called creating an
unsigned image. An Intel FPGA PAC that has not had the FPGA SR user image root
entry hash programmed runs any unsigned or signed image. This capability allows you
to test and validate the functionality of your FPGA SR user image prior to fully signing
the image for deployment into a production environment. Please refer to the Creating
Unsigned Images section for more information.

You program your FPGA SR user image root entry hash bitstream to enable image
authentication. This process establishes you as the owner of the Intel FPGA PAC
N3000. The Intel FPGA PAC N3000 then requires you to create signatures based on
this root entry hash for each image you intend to load on the Intel FPGA PAC. Intel
strongly recommends that you program the root entry hash bitstream for Intel FPGA
PACs used in production environments. You must follow this flow to enable FPGA SR
user image authentication on your Intel FPGA PAC.

2. Intel FPGA PAC Security Features

683519 | 2020.09.08

Send Feedback Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1. Secure User Image Flow

Create your Keys

Create your Root Entry Hash Bitstream

Program the Root Entry Hash Bitstream
into the Intel FPGA PAC

Sign your FPGA static region (SR) User Image

Program your FPGA SR User Image
on the Intel FPGA PAC

The chapters within this user guide cover the steps in this flow:

1. Create your keys: Create your keys using a Hardware Security Module (HSM) or
OpenSSL. You need at least two keys, one which you designate as a root key and
another you designate as a code signing key (CSK). These keys are asymmetric
keys, meaning they consist of an underlying pair of keys. The first is called a
private key and the second is a public key that is derived from the private key. A
private key is used to create signatures over objects that can be verified with the
corresponding public key. The private key must be kept confidential, as anyone in
possession of the private key can create a signature; conversely, if you maintain
the confidentiality of the private key, then signatures can be trusted to originate
only from you. The public key cannot create signatures or be used to derive the
original private key. Therefore, it is not required nor important to protect the
confidentiality of the public key; the public key is considered public information.

2. Create your root entry hash bitstream: Use the PACSign tool to create a
bitstream that contains the root entry hash. You create a root entry hash
bitstream from your root public key. This hash is a representation of your root
public key and can only be created with an exact copy of the root public key. The
root entry hash bitstream is then programmed to the Intel FPGA PAC. The Intel
FPGA PAC then uses this hash to verify the integrity of the root public key, which is
included with all images transmitted to an Intel FPGA PAC. After the integrity of
the root public key is confirmed, it can be used in the signature verification
process.

3. Program your root entry hash bitstream into the Intel FPGA PAC. You must
use the fpgasupdate command to program the bitstream containing your root
entry hash into the flash on the board. Until you program the root entry hash
bitstream, the Intel FPGA PAC loads and executes any signed or unsigned image.
Intel strongly recommends that you create and program a root entry hash
bitstream for Intel FPGA PACs deployed in production environments. Please refer
to the Using fpgasupdate chapter for more information.

2. Intel FPGA PAC Security Features

683519 | 2020.09.08

Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Only the owner who is deploying the Intel FPGA PAC must program the root
entry hash bitstream.

4. Sign your FPGA SR user image. Using PACSign you can sign your image with
the root public key and code signing key. Please refer to the Using PACSign
chapter for more information.

5. Program your FPGA SR user image onto the Intel FPGA PAC. Use the
fpgasupdate command to program your FPGA SR user image into flash. Then
use the rsu command to configure your FPGA. The BMC verifies the FPGA SR user
image to ensure only an authorized bitstream is loaded on the Intel FPGA PAC.
The root public key, code signing public key, signature of the code signing public
key, and signature of the image are all attached to the code or design transmitted
to the Intel FPGA PAC. The card first verifies the integrity of the root public key,
then verifies the signature of the code signing public key using the root public key,
and finally proceeds to verify the signature of the code or design using the code
signing public key. The code or design is only accepted if all three of these steps
are completed successfully.

2.2. Anti-Rollback Capability

The Intel MAX 10 BMC RoT provides anti-rollback capability through the code signing
key ID cancellation feature. A CSK is assigned an ID, a number between 0-127, during
the signing process. CSK ID cancellation information is stored in 128-bit fields in
write-once locations in flash. When a code signing key ID is canceled, the Intel MAX
10 BMC RoT rejects all signatures created with a CSK that is assigned that ID. If a
CSK ID that is used in an old update is canceled after applying a new update with a
different CSK ID, the Intel MAX 10 BMC RoT rejects the signature of the old update,
preventing a rollback to the old update.

Note: If you cancel a key and do not update your image with a different CSK ID, the old
image continues to be operational unless the user updates it with the new image
signed with a different CSK ID.

2.3. Key Management

The Intel MAX 10 BMC RoT uses ECDSA with a key length of 256 bits to authenticate:

• Intel MAX 10 BMC Nios firmware and Intel MAX 10 FPGA images

• FPGA static region (SR) user image

The Intel MAX 10 BMC RoT supports separate key chains for each image, and each key
chain must consist of a root key and a CSK.

The Intel MAX 10 BMC RoT does not support a signature of any image with a root key.
You must use a key designated as a CSK to sign your image. Steps you are
responsible for when creating keys, root entry hashes and programming your image
on the Intel FPGA PAC are:

2. Intel FPGA PAC Security Features

683519 | 2020.09.08

Send Feedback Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• You must manage assigning CSK IDs to CSKs and consistently using the same ID
for a given CSK. Neither an Intel FPGA PAC nor the PACSign tool associate a
particular key's value with its ID. It is possible to assign a given CSK multiple IDs,
or multiple CSKs to a given ID. This may result in unintended consequences when
attempting to cancel a CSK. Intel recommends exclusive ID assignments for each
CSK.

• You are responsible for creating the appropriate key cancellation bitstreams. You
must use the same ID number for key cancellation as the one you assigned to the
CSK at key creation. Key cancellation bitstreams must be signed with the
applicable root key. This helps avoid denial of service through an unintended
cancellation of all key values.

• You are responsible for generating and managing your FPGA static region image
root key and CSKs. You generate the FPGA SR user image root entry hash
bitstream using your root key.

• You are also responsible for programming this root entry hash bitstream on the
Intel FPGA PAC. If your Intel FPGA PAC does not have a programmed FPGA SR
user image root entry hash bitstream stored, it executes any signed or unsigned
image.

Note: Intel strongly recommends programming an image root entry hash
bitstream. You must protect the confidentiality of the root private key
throughout the life of the Intel FPGA PAC.

The Intel MAX 10 BMC RoT bitstreams in the on-board flash for:

1. BMC Nios firmware and Intel MAX 10 FPGA images

2. FPGA SR user image

The BMC is architected so that all root entry hashes cannot be revoked, changed, or
erased once programmed.

In the future, Intel-provided updates to the Intel MAX 10 BMC firmware or Intel MAX
10 images may necessitate an Intel key cancellation in order to help prevent an
unintended rollback to a prior version. In this case, Intel provides the update with a
signed CSK that has a different ID than all prior updates. Intel provides a separate key
cancellation bitstream to cancel the appropriate Intel keys. You may test an update by
applying it before programming the key cancellation bitstream. The prior BMC
firmware or update images continue to be accepted as valid updates until the new key
cancellation bitstream is applied.

2.4. Authentication

To enable authentication:

1. Use the PACSign tool to create a root entry hash bitstream.

2. Use the fpgasupdate tool to program the bitstream onto the Intel FPGA PAC.

$ sudo fpgasupdate [--log-level=<level>] file [bdf]

3. Power cycle your card to load the new bitstream by running the following
command:

$ sudo rsu bmcimg 3e:00.0

Note: In this example, the [bdf] is 3e:00.0. You must provide the BDF assigned
to the PCIe DevID 0b30 on your system.

2. Intel FPGA PAC Security Features

683519 | 2020.09.08

Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

All key operations are done using PACSign. PACSign is a standalone tool that is not
required to be run on a machine with the Intel FPGA PAC installed. Key creation,
signing, and cancellation bitstream creation are not runtime operations and can be
performed at any time. The signing process prepends the signature to the FPGA SR
User image file. The BMC RoT does not need access to the HSM at any point to verify a
signature.

The signing process requires a root key and a Code Signing Key (CSK). PACSign first
signs the CSK with the root key, and then signs the image with the CSK. The signature
process prepends two “blocks” of data to the image file.

Note: If you are using an Intel Acceleration Stack version 1.1 production or greater, your
FPGA SR user image must have prepended signature blocks, even if the corresponding
root entry hash bitstream has not been programmed. PACSign allows you to prepend
the required blocks with an empty signature chain.

2.5. Encryption

FPGA SR user image encryption is not supported on the Intel FPGA PAC N3000.

2. Intel FPGA PAC Security Features

683519 | 2020.09.08

Send Feedback Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Intel FPGA PAC Security Flow
The following steps describe the flow to enable Intel FPGA PAC security. See the
corresponding sections in this chapter for detailed instructions on each step.

1. Install PACSign.

2. If you are in development, you may optionally create an unsigned FPGA SR user
image to test and validate the functionality of your image prior to fully signing the
image for deployment into a production environment. Please refer to the Creating
Unsigned Images section for more information.

3. Create your root key and CSK(s). You can use OpenSSL or an HSM for this
action.

Figure 2. Key Creation Using OpenSSL

Open SSL
key_fim_root_public.pem
key_fim_root_private.pem
key_fim_csk[x]_public.pem
key_fim_csk[x]_private.pem

Figure 3. Key Creation Using HSM pkcs11_tool

Key Pair Generation Command
option

(--keypairgen)
Hardware
Security
Module

pkcs11-tool

4. Create your root entry hash bitstream.

683519 | 2020.09.08

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 4. Creating Root Entry Hash Bitstream with OpenSSL

PACSignkey_fim_root_public.pem
key_fim_root_private.pem

root_public_program_ssl.bin
Output

OpenSSL

SHA256

Root Entry Hash*.pem files

*.pem

Figure 5. Creating Root Entry Hash Bitstream with HSM pkcs11_manager

PACSign*.json file root_public_program_hsm.binOutput

Hardware
Security
Module

SHA256

Root Entry Hash

requested key
and hash operations

5. Program your root entry hash bitstream onto the Intel FPGA PAC.

6. Sign your FPGA SR user image.

3. Intel FPGA PAC Security Flow

683519 | 2020.09.08

Send Feedback Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6. Signing your image with OpenSSL

PACSign signed_N3000_<FPGA_image>.bin
Output

OpenSSL

signatures

Image with Block0, Block1 prepended

key_fim_root_public_key.pem
key_fim_csk[x]_pubic_key.pem
N3000_<FPGA_image>.bin

Key File and Image inputs

keys, image file

Figure 7. Signing your image with pkcs11_manager

PACSign N3000_<FPGA_image>_signed_ssl.binOutput

Hardware
Security
Module

signatures

Image with Block0, Block1 prepended

hsm.json
N3000_<FPGA_image>.bin

Key File and Image inputs

image file, requested key and
signature operations

7. Program your FPGA SR user image into the Intel FPGA PAC. For directions
on how to program your FPGA SR user image, refer to the Using fpgasupdate
chapter.

Related Information

Using fpgasupdate on page 35

3.1. Installing PACSign

PACSign is a standalone tool that interfaces with your HSM to manage root entry hash
bitstream creation, image signing, and cancellation bitstream creation. PACSign is
implemented in Python and requires Python 3. Using PACSign with the PKCS11
interface requires the python-pkcs11 package. PACSign does not need an Intel FPGA
PAC installed in the system to run. Systems where signed images are being deployed
to an Intel FPGA PAC do not need PACSign installed nor access to the HSM.

Note: You must install Python 3 to use PACSign.

Note: The Acceleration Stack includes the PACSign package. You can check if you already
have this package by typing: rpm -qa| grep opae.

3. Intel FPGA PAC Security Flow

683519 | 2020.09.08

Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Unpack the opae.pac_sign-1.0.1.tar.gz tarball, which contains the
opae.pac_sign-1.0.4-2.x86_64.rpm package.

sudo yum install opae.pac_sign-1.0.4-2.x86_64.rpm

You can use the RTE installer with this command to extract and just install
PACSign:

./n3000-1.3.8-rte-setup.sh -t pacsign -n
~/n3000_ias_1_1_pv_rte_installer
Running setup
Do you wish to install OPAE PACSign ?

2. Ensure you have installed Python 3, the Python 3 development libraries, and the
Python 3 version of the python-pkcs11 package on your system.

3. Use your system package installer to install the .rpm package.
PACSign installs to your /usr/local/bin directory and the necessary
Python3.6 modules install to your /usr/local/lib directory.

Note: PACSign depends on a Python3 interpreter version 3.6 or later. You must
either install Python3 to, or create a symlink in, /usr/local/bin for
PACSign to work. You must also ensure that the python modules PACSign
depends on are visible to your python3 interpreter. You can do this by
including the path /usr/local/lib/python3.6/site-packages/ in the
PYTHONPATH environment variable.

export PYTHONPATH=/usr/local/lib/python3.6/site-packages/

3.2. PACSign Tool

The PACSign utility is installed on your path.

• Use PACSign by simply calling it directly with the command PACSign

• Calling PACSign with the -h option shows a help message describing the tool
usage.

• Typing PACsign <image_type> -h shows options available for that image type.

[PACSign_Demo]$ PACSign -h
usage: PACSign [-h] {SR,FIM,BBS,BMC,BMC_FW,PR,AFU,GBS} ...

Sign PAC bitstreams

optional arguments:
-h, --help show this help message and exit

Commands:
Image types
{SR,FIM,BBS,BMC,BMC_FW,PR(1),AFU,GBS}
Allowable image types
SR (FIM, BBS) Static FPGA image
BMC (BMC_FW) BMC image
PR (AFU, GBS) Reconfigurable FPGA image

[PACSign_Demo]$ PACSign AFU -h
usage: PACSign SR [-h] -t {UPDATE,CANCEL,RK_256,RK_384} -H HSM_MANAGER
 [-C HSM_CONFIG] [-r ROOT_KEY] [-k CODE_SIGNING_KEY]
 [-d CSK_ID] [-i INPUT_FILE] [-o OUTPUT_FILE] [-y] [-v]

(1) Intel FPGA PAC N3000 does not support PR

3. Intel FPGA PAC Security Flow

683519 | 2020.09.08

Send Feedback Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

optional arguments:
 -h, --help show this help message and exit
 -t {UPDATE,CANCEL,RK_256,RK_384}, --cert_type {UPDATE,CANCEL,RK_256,RK_384}
 Type of certificate to generate
 -H HSM_MANAGER, --HSM_manager HSM_MANAGER
 Module name for key / signing manager
 -C HSM_CONFIG, --HSM_config HSM_CONFIG
 Config file name for key / signing manager (optional)
 -r ROOT_KEY, --root_key ROOT_KEY
 Identifier for the root key. Provided as-is to the key
 manager
 -k CODE_SIGNING_KEY, --code_signing_key CODE_SIGNING_KEY
 Identifier for the CSK. Provided as-is to the key
 manager
 -d CSK_ID, --csk_id CSK_ID
 CSK number. Only required for cancellation certificate
 -i INPUT_FILE, --input_file INPUT_FILE
 File name for the image to be acted upon
 -o OUTPUT_FILE, --output_file OUTPUT_FILE
 File name in which the result is to be stored
 -y, --yes Answer all questions with "yes"
 -v, --verbose Increase verbosity. Can be specified multiple times

3.3. Creating Unsigned Images

The BMC secure firmware does not accept an FPGA SR user image without the
prepended authentication blocks generated by PACSign, even if an FPGA SR user
image root entry hash bitstream has not been programmed. If you want to operate an
Intel FPGA PAC without a root entry hash bitstream programmed, such as in a
development environment, you must still use PACSign to prepend the authentication
blocks but you may do so with an empty signature chain. An image with prepended
authentication blocks containing an empty signature chain is called an unsigned
image. PACSign supports the creation of an unsigned image by using the UPDATE
operation without specifying keys. Intel recommends using signed images in
production deployments.

1. Create unsigned bitstream.

Using OpenSSL:

[PACSign_Demo]$ PACSign SR -t UPDATE -H openssl_manager -i pac-n3000-secure-
update-raw.bin -o unsigned_N3000_RSU.bin

Using HSM:

[PACSign_Demo]$ PACSign SR -t UPDATE -H pkcs11_manager -C softhsm.json -i \
pac-n3000-secure-update-raw.bin -o pac-n3000-secure-update-raw.bin

The output prompts you to enter Y or N to continue generating an unsigned
bitstream.

No root key specified. Generate unsigned bitstream? Y = yes, N = no: Y
No CSK specified. Generate unsigned bitstream? Y = yes, N = no: Y

2. Program the unsigned bitstream.

[PACSign_Demo]$ sudo fpgasupdate pac-n3000-secure-update-raw.bin b2:00.0

3. Perform remote system update to power cycle the Intel FPGA PAC N3000 and load
the updated image into the FPGA.

[PACSign_Demo]$ sudo rsu bmcimg b2:00.0

3. Intel FPGA PAC Security Flow

683519 | 2020.09.08

Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.4. Using an HSM Manager

The PACSign tool does not implement any cryptographic functions. PACSign must
interact with a cryptographic service, and it does this through modules called
Hardware Security Module (HSM) managers. PACSign provides the following
managers:

• openssl_manager: interfaces with OpenSSL

• pkcs11_manager: interfaces with any HSM implementing PKCS#11

Use the -H option with the PACSign command to select an HSM manager. The
following sections provide examples for the PACSign OpenSSL manager using
OpenSSL v1.1.1d, and the PACSign PKCS #11 manager using SoftHSM v2.5.0.
Examples of key creation and management with both OpenSSL and SoftHSM (through
the utilities softhsm2-util and pkcs11-tool) are also provided. To create your own
custom HSM manager, refer to the Custom HSM Manager Creation topic more
information.

Related Information

Creating a Custom HSM Manager on page 24

3.5. Creating Keys

Create your root and code signing keys using your desired key management utility
(HSM or OpenSSL). Assign your key CSK IDs during key creation. Intel recommends
that you consistently use the same ID for a given key across all image signings.

3.5.1. OpenSSL Key Creation

When using OpenSSL, create a private key and then create the corresponding public
key. The PACSign OpenSSL manager requires specific tags in the key file names using
a format: key_<image_type>_<key_type>_<key_visibility>_key.pem.

Table 4. PACSign OpenSSL Manager Key File Name Requirements

Filename Tag Options Description

image_type • pr

• fim

Identifies image type, partial reconfiguration or
static region, for which the key is intended.
• For Intel FPGA PAC N3000, use;

key_fim_<key_type>_<key_section>_key.
pem

key_type • root

• csk<x>

Identifies key type. <x> specifies an ID that you use
for cancellation.
• Example: key_fim_csk12_private_key.pem

key_visibility • public

• private

Identifies the key visibility.

The following example creates a root key and two code signing keys using OpenSSL.

1. Create the root private key:

[PACSign_Demo]$ openssl ecparam -name secp256r1 -genkey -noout -out
key_fim_root_private_key.pem

3. Intel FPGA PAC Security Flow

683519 | 2020.09.08

Send Feedback Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Output:

using curve name prime256v1 instead of secp256r1

2. Create the root public key:

[PACSign_Demo]$ openssl ec -in key_fim_root_private_key.pem -pubout -out
key_fim_root_public_key.pem

Output:

read EC key
writing EC key

3. Create private CSK1:

[PACSign_Demo]$ openssl ecparam -name secp256r1 -genkey -noout -out
key_fim_csk1_private_key.pem

Output:

using curve name prime256v1 instead of secp256r1

4. Create public CSK1:

[PACSign_Demo]$ openssl ec -in key_fim_csk1_private_key.pem -pubout -out
key_fim_csk1_public_key.pem

Output:

read EC key
writing EC key

5. Create private CSK2:

[PACSign_Demo]$ openssl ecparam -name secp256r1 -genkey -noout -out
key_fim_csk2_private_key.pem

Output:

using curve name prime256v1 instead of secp256r1

6. Create public CSK2:

[PACSign_Demo]$ openssl ec -in key_fim_csk2_private_key.pem -pubout -out
key_fim_csk2_public_key.pem

Output:

read EC key
writing EC key

3.5.2. HSM Key Creation

If you are using an HSM, you need one token to create and store the root and code
signing keys. The following example initializes a token using SoftHSM, with separate
security officer and user PINs.

[PACSign_Demo]$ softhsm2-util --init-token --label pac-hsm --so-pin hsm-owner \
--pin pac-afu-signer --free

Output:

Slot 0 has a free/uninitialized token.
The token has been initialized and is reassigned to slot 1441483598

3. Intel FPGA PAC Security Flow

683519 | 2020.09.08

Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

After you create a token, you can create keys in that token. The following example
initializes a root and two code signing keys in the token created above, similarly using
pkcs11-tool to interact with SoftHSM. The HSM, not PACSign, uses the key ID
provided in this example. PACSign uses CSK IDs from a configuration *.json file in
PKCS11 mode. You must manage consistency across ID values in the HSM and those
used by PACSign. See the PACSign PKCS11 Manager *.json Reference topic for more
information on the *.json file format.

1. Initialize the root key:

[PACSign_Demo]$ pkcs11-tool --module=/usr/local/lib/softhsm/libsofthsm2.so \
--token-label pac-hsm --login --pin pac-afu-signer --keypairgen \
--mechanism ECDSA-KEY-PAIR-GEN --key-type EC:secp256r1 \
--usage-sign --label root_key --id 0

Output:

Key pair generated:
Private Key Object; EC
label: root_key
ID: 00
Usage: decrypt, sign, unwrap
Public Key Object; EC EC_POINT 256 bits
EC_POINT:
0441043d3756347e6c257dac085574cc1cd984cdeee2c1059a0f035dabc3ad6e1950c8717dc7
ac8451a90c2471e95f4a69d6517f02f678830280f90a479c76a3e95d64
EC_PARAMS: 06082a8648ce3d030107
label: root_key
ID: 00
Usage: encrypt, verify, wrap

2. Initialize the CSK1:

[PACSign_Demo]$ pkcs11-tool --module=/usr/local/lib/softhsm/libsofthsm2.so \
--token-label pac-hsm --login --pin pac-afu-signer --keypairgen \
--mechanism ECDSA-KEY-PAIR-GEN --key-type EC:secp256r1 \
--usage-sign --label csk_1 --id 1

Output:

Key pair generated:
Private Key Object; EC
label: csk_1
ID: 01
Usage: decrypt, sign, unwrap
Public Key Object; EC EC_POINT 256 bits
EC_POINT:
0441041a827c903b5da8478c81fe652208704f0621b984190cd961ee154ac5c3ba772d1caa26
964a189262ee31b8e5d77898f293c0589b350103037b664d31adf68924
EC_PARAMS: 06082a8648ce3d030107
label: csk_1
ID: 01
Usage: encrypt, verify, wrap

3. Initialize CSK2:

[PACSign_Demo]$ pkcs11-tool --module=/usr/local/lib/softhsm/libsofthsm2.so \
--token-label pac-hsm --login --pin pac-afu-signer --keypairgen \
--mechanism ECDSA-KEY-PAIR-GEN --key-type EC:secp256r1 \
--usage-sign --label csk_2 --id 2

Output:

Key pair generated:
Private Key Object; EC
label: csk_2
ID: 02

3. Intel FPGA PAC Security Flow

683519 | 2020.09.08

Send Feedback Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Usage: decrypt, sign, unwrap
Public Key Object; EC EC_POINT 256 bits
EC_POINT:
04410495f7556912d8753cf873be7a54e7d88c28bca672496abd90d9b44cc95cf50df9169b7a
d043a7340003a2bf96cb461e0575319b541ceb5d873d06334b30d208cc
EC_PARAMS: 06082a8648ce3d030107
label: csk_2
ID: 02
Usage: encrypt, verify, wrap

4. After keys are created in your token, it may be useful to inspect the token to
verify the expected keys, labels, and IDs are present.

[PACSign_Demo]$ pkcs11-tool --module=/usr/local/lib/softhsm/libsofthsm2.so \
--token-label pac-hsm --login --pin pac-afu-signer -O

Output:

Public Key Object; EC EC_POINT 256 bits
EC_POINT:
04410495f7556912d8753cf873be7a54e7d88c28bca672496abd90d9b44cc95cf50df9169b7a
d043a7340003a2bf96cb461e0575319b541ceb5d873d06334b30d208cc
EC_PARAMS: 06082a8648ce3d030107
label: csk_2
ID: 02
Usage: encrypt, verify, wrap
Public Key Object; EC EC_POINT 256 bits
EC_POINT:
0441043d3756347e6c257dac085574cc1cd984cdeee2c1059a0f035dabc3ad6e1950c8717dc7
ac8451a90c2471e95f4a69d6517f02f678830280f90a479c76a3e95d64
EC_PARAMS: 06082a8648ce3d030107
label: root_key
ID: 00
Usage: encrypt, verify, wrap
Private Key Object; EC
label: root_key
ID: 00
Usage: decrypt, sign, unwrap
Private Key Object; EC
label: csk_2
ID: 02
Usage: decrypt, sign, unwrap
Private Key Object; EC
label: csk_1
ID: 01
Usage: decrypt, sign, unwrap
Public Key Object; EC EC_POINT 256 bits
EC_POINT:
0441041a827c903b5da8478c81fe652208704f0621b984190cd961ee154ac5c3ba772d1caa26
964a189262ee31b8e5d77898f293c0589b350103037b664d31adf68924
EC_PARAMS: 06082a8648ce3d030107
label: csk_1
ID: 01
Usage: encrypt, verify, wrap

Related Information

PACSign PKCS11 Manager *.json Reference on page 23

3.6. Root Entry Hash Bitstream Creation

In order to program the root entry hash bitstream to an Intel FPGA PAC, you must use
PACSign to create a root entry hash bitstream.

1. In your PACSign command, specify the type RK_256 and select the appropriate
HSM manager and configuration.

3. Intel FPGA PAC Security Flow

683519 | 2020.09.08

Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To create a root entry hash bitstream using OpenSSL and the key generated in
the OpenSSL Key Creation topic, type:

[PACSign_Demo]$ PACSign SR -t RK_256 -H openssl_manager -r
key_fim_root_public_key.pem -o root_public_program_ssl.bin

• To create a root entry hash bitstream using a SoftHSM and the root key
generated in the HSM Key Creation topic, type:

[PACSign_Demo]$ PACSign SR -t RK_256 -H pkcs11_manager -C softhsm.json -
r root_key -o root_public_program_hsm.bin

Note: PACSign requires an HSM configuration *.json file to request the
correct key from the HSM. For more information about the structure and
contents of the *.json file, refer to the PACSign PKCS11 Manager .json
Reference topic.

2. After creating the root entry hash bitstream, program the bitstream to an Intel
FPGA PAC using the fpgasupdate command.

[PACSign_Demo]$ sudo fpgasupdate <root entry hash bitstream> b2:00.0

This operation is permanent and irreversible. After a FPGA SR user image root
entry hash bitstream is programmed, the Intel FPGA PAC validates a FPGA SR user
image signature prior to loading. For more details on key management, see the
Key Management topic. For more information on how to use fpgasupdate, refer
to the Using fpgasupdate section.

3. After you program the root entry hash bitstream, power cycle your Intel FPGA
PAC.

[PACSign_Demo]$ sudo rsu bmcimg b2:00.0

3.7. Signing Images

After the root and code signing keys have been created, you may sign your FPGA SR
user image. Use the appropriate SR bitstream type with the UPDATE identifier to
perform this operation, and specify the HSM configuration, root key, code signing key,
and image input and output file names.

The following example demonstrates image signing using OpenSSL and the root and
code signing keys generated in OpenSSL Key Creation topic.

[PACSign_Demo]$ PACSign SR -t UPDATE -H openssl_manager -r
key_fim_root_public_key.pem -k key_fim_csk1_public_key.pem -i hello_afu.bin -o
hello_afu_signed_ssl.bin

Note: Even though public keys are specified in the above OpenSSL signing process, the
bitstream is indeed signed with the private keys. The OpenSSL signing requires the
private keys and they must be the same name with ‘public’ replaced with ‘private’. The
reason public keys are specified is because private keys are usually maintained by an
HSM and are not available to you.

3. Intel FPGA PAC Security Flow

683519 | 2020.09.08

Send Feedback Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following example demonstrates image signing using SoftHSM PKCS11 and the
root and code signing keys generated in HSM Key Creation topic. Using this method,
you must create a softhsm.json file. Refer to the PACSign PKCS11 Manager .json
Reference topic for more information on the *.json file.

[PACSign_Demo]$ PACSign SR -t UPDATE -H pkcs11_manager -C softhsm.json -r
root_key -k csk_1 -i hello_afu.bin -o hello_afu_signed_hsm.bin

You can program signed bitstreams on your Intel FPGA PAC by using the
fpgasupdate tool and power cycle the card.

[PACSign_Demo]$ sudo fpgasupdate <signed bitstream> B:D.F
[PACSign_Demo]$ sudo rsu bmcimg B:D.F

An Intel FPGA PAC only authenticates signed bitstreams after a root entry hash
bitstream has been programmed. An Intel FPGA PAC that has not been programmed
with a root entry hash bitstream accepts a signed bitstream and ignores the contents
of the signature chain.

If your fpgasudate fails, refer to section Troubleshooting on page 36 for guidance
on interpretation of the error and for corrective action.

Related Information

• OpenSSL Key Creation on page 17

• HSM Key Creation on page 18

• PACSign PKCS11 Manager *.json Reference on page 23

• Using fpgasupdate on page 35

• Troubleshooting on page 36

3.8. Creating a CSK ID Cancellation Bitstream

To cancel a CSK ID on an Intel FPGA PAC, you must use PACSign to create a CSK ID
cancellation bitstream. To do this, you must specify the type CANCEL, select the
appropriate HSM manager and root key, and provide the CSK ID number to cancel. For
OpenSSL, the CSK ID used during image signing is derived from the CSK filename. For
PKCS11, the CSK ID used during image signing is extracted from the csk_id field in
the configuration .json discussed in the next section.

1. Create a cancellation bitstream.

Using OpenSSL:

PACSign SR -t CANCEL -H openssl_manager -r key_fim_root_public_key.pem -d 1
-o ssl_csk1_cancel.bin

Using PKCS11:

PACSign SR -t CANCEL -H pkcs11_manager -C softhsm.json -r root_key -d 1 -o
hsm_csk1_cancel.bin

2. Program the CSK ID cancellation on the Intel FPGA PAC using the fpgasupdate
tool.

fpgasupdate ssl_csk1_cancel.bin b2:00.0

CSK ID cancellation bitstreams are only valid on Intel FPGA PACs that have been
programmed with the corresponding root entry hash bitstream.

3. Intel FPGA PAC Security Flow

683519 | 2020.09.08

Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. After you program a CSK ID cancellation bitstream, you must power cycle the
Intel FPGA PAC.

[PACSign_Demo]$ sudo rsu bmcimg b2:00.0

3.9. PACSign PKCS11 Manager *.json Reference

The PACSign PKCS11 Manager uses a *.json file that stores information on how to
interact with your HSM.

It contains information specific to your HSM, as well as a description of the token and
keys that you created for use with PACSign. The PKCS11 examples in this chapter use
softhsm.json, which contains the following:

{
 "cryptoki_version": [2, 40],
 "library_version": [2, 5],
 "platform-name" : "DCP",
 "lib_path" : “/usr/local/lib/softhsm/libsofthsm2.so”,
 "curve": "secp256r1",
 "token": {
 "label": "pac-hsm",
 "user_password": "pac-afu-signer",
 "keys":
 [
 {
 "label": "root_key",
 "key_id": "0",
 "type": "PR",
 "permissions": "0xFFFFFFFF",
 "csk_id": "0xFFFFFFFF",
 "is_root": true
 },
 {
 "label": "csk_1",
 "key_id": "1",
 "type": "PR",
 "permissions": "0x4",
 "csk_id": "0x1",
 "is_root": false
 },
 {
 "label": "csk_2",
 "key_id": "2",
 "type": "PR",
 "permissions": "0x4",
 "csk_id": "0x2",
 "is_root": false
 }
]
 }
}

The cryptoki_version and library_version information is determined by your
HSM and can be reported by pkcs11-tool:

[PACSign_Demo]$ pkcs11-tool --module=/usr/local/lib/softhsm/libsofthsm2.so -I

Output:

Cryptoki version 2.40
Manufacturer SoftHSM
Library Implementation of PKCS11 (ver 2.5)
Using slot 0 with a present token (0x55eb4b4e)

3. Intel FPGA PAC Security Flow

683519 | 2020.09.08

Send Feedback Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• platform-name: Always set to DCP.

• lib_path: Your HSM software library installation determines this path.

• curve: Always set to secp256r1 because this is the only elliptic curve currently
supported by the BMC.

• The token entry contains:

— label: determined when you initialize the token in your HSM

— user_password: determined when you initialize the token in your HSM

— keys: lists the keys in the token available for use by PACSign

• Within the key field are:

— label: determined when you initialize the token in your HSM

— key_id: determined when you initialize the token in your HSM

Note: Each label and key_id must match what you used when you created
the key.

— type: Either PR or SR for partial reconfiguration or static region, respectively.

— permissions: Set to 0x1 for static region signing; 0x2 for BMC signing; 0x4
for partial reconfiguration region signing.

— csk_id: What PACSign uses when signing a FPGA SR user image; does not
need to match the key_id field. Valid values are 0xFFFFFFFF for root keys
and 0x0-0x7F for Intel FPGA PAC N3000 code signing keys.

— is_root: Allows you to designate to PACSign the intended use of the key as
a root key or code signing key.

3.10. Creating a Custom HSM Manager

PACSign is a Python tool that uses a plugin architecture for the HSM interface.
PACSign is distributed with managers for both OpenSSL and PKCS #11. This section
describes the functionality required by PACSign from the HSM interface and shows
how to construct a plugin.

The distribution of PACSign uses the following directory structure:

├├├├hsm_managers
├ ├├├├openssl_manager
├ ├ ├├├├library
├ ├├├├pkcs11_manager
├├├├source

The top level contains PACSign.py with the generic signing code in source. The HSM
managers reside each in their own subdirectory under hsm_managers as packages.
The directory name is what is given to PACSign’s --HSM_MANAGER command-line
option. If the specific manager requires additional information, you can provide it
using the optional --HSM_config command-line option. For example, the PKCS #11
plugin requires a *.json file describing the tokens and keys available on the HSM.

3. Intel FPGA PAC Security Flow

683519 | 2020.09.08

Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You must place each plugin that is to be supported in a subdirectory of the
hsm_managers directory. Use a descriptive name for the directory that clearly
describes the supported HSM. This subdirectory may have an __init__.py file
whose contents import the modules needed by the plugin. The names of the plugin
modules are not important to the proper functioning of PACSign.

The newly-created plugin must be able to export one attribute named HSM_MANAGER
that is invoked by PACSign with an optional configuration file name provided on the
command-line. Invocation of HSM_MANAGER(config_file) returns a class with
certain methods exposed, which are described in later sections.

Current implementations of HSM_MANAGER define it as a Python class object. The
initialization function of the class reads and parses the configuration file (if present)
and performs HSM initialization. For the PKCS #11 implementation, the class looks like
this:

class HSM_MANAGER(object):
 def __init__(self, cfg_file = None):
 common_util.assert_in_error(cfg_file, \
 PKCS11 HSM manager requires a configuration file")
 self.session = None
 with open(cfg_file, "r") as read_file:
 self.j_data = json.load(read_file)
 j_data = self.j_data

 lib = pkcs11.lib(j_data['lib_path'])
 token = lib.get_token(token_label=j_data['token']['label'])
 self.session = token.open(user_pin=j_data['token']['user_password'])
 self.curve = j_data['curve']

 self.ecparams = self.session.create_domain_parameters(\
 pkcs11.KeyType.EC, {pkcs11.Attribute: \
 pkcs11.util.ec.encode_named_curve_parameters(self.curve)}, \
 local=True)

Error handling code has been omitted for clarity. This code does the following:

• Opens and parses the *.json configuration file.

• Loads the vendor-supplied PKCS #11 library into the program.

• Sets up a session with the correct token.

• Retrieves the proper elliptic curve parameters for the curve you select.

The following sections describe the required exported methods of this class.

3.10.1. HSM_MANAGER.get_public_key(public_key)

This method returns an instance of a public key that is described by ‘public_key’,
which was provided via a command-line option (--root_key or --
code_signing_key). The HSM manager must know how to properly identify the key
on the HSM given this string.

The public key instance is required to supply the public methods described in the
sections that follow. The PKCS #11 implementation of this function,
get_public_key, is below:

def get_public_key(self, public_key):
 try:
 key_, local_key = self.get_key(public_key, ObjectClass.PUBLIC_KEY)
 key_ = key_[Attribute.EC_POINT]

3. Intel FPGA PAC Security Flow

683519 | 2020.09.08

Send Feedback Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 except pkcs11.NoSuchKey:
 pass # No key found
 except pkcs11.MultipleObjectsReturned:
 pass # Multiple keys found
 return _PUBLIC_KEY(key_[3:], local_key)

3.10.1.1. PUBLIC_KEY.get_X_Y()

This function returns a common_util.BYTE_ARRAY() that contains the elliptic curve
point associated with the key. The returned value should be X concatenated with Y,
each with the proper number of bytes. For our implementation, each of X and Y are 32
bytes (256 bits) because secp256r1 curve parameters are required.

3.10.1.2. PUBLIC_KEY.get_permission()

Intel FPGA PAC keys have associated permissions. This function returns an integer
that corresponds to the assigned key permissions. For Intel FPGA PACs, all root key
permissions must be the constant 0xFFFFFFFF. For code signing keys, the
permissions are described below.

Table 5. Key Permissions

Value Name Permission

1 SIGN_SR Sign the FIM or Static Region

2 SIGN_BMC Sign the card BMC Nios firmware
and/or the Intel MAX 10 image

4 SIGN_PR Sign the PR Region or AFU

3.10.1.3. PUBLIC_KEY.get_ID()

Intel FPGA PACs have a laddering key mechanism that allows for cancellation of code
signing keys. This method returns the integer key ID of the specified key. The root key
ID must be the constant 0xFFFFFFFF. Root keys cannot be canceled.

Intel FPGA PAC N3000 FPGA SR user image code signing key IDs must be in the range
0 to 127 (7-bit unsigned).

3.10.1.4. PUBLIC_KEY.get_content_type()

Code signing keys and root keys can be restricted to signing only certain types of
content. For instance, there are separate root keys for PR, SR, and BMC bitstreams as
well as corresponding code signing keys. This method should return the bitstream
type associated with this key, and must be one of {FIM, SR, BBS, BMC, BMC_FW,
AFU, PR, or GBS}.

3.10.2. HSM_MANAGER.sign(data, key)

This method uses the key provided to generate an ECDSA signature over the provided
data.

The return value of this method is a common_util.BYTE_ARRAY() containing the R
and S values of the signature concatenated. PACSign only signs hashes, so the length
of the data to be signed will be a fixed-length 32 byte array.

3. Intel FPGA PAC Security Flow

683519 | 2020.09.08

Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.10.3. Signing Operation Flow

A PACSign command that invokes the PKCS #11 manager plugin initializes it with the
configuration file name.

PACSign performs insertion of authentication blocks into the bitstream, signed by the
root and code signing keys. The resultant signed bitstream is written to the specified
output file.

PACSign requests that the HSM manager retrieve the public key X and Y values for the
root key and the code signing key. The HSM manager returns the R and S signature
over PACSign-provided 256-bit hash values using the root key and code signing key.
The following code snippet demonstrates how PACSign utilizes the HSM manager.

self.pub_root_key_c = self.hsm_manager.get_public_key(args.root_key)
common_util.assert_in_error(self.pub_root_key_c, \
 "Cannot retrieve root public key")
 self.pub_root_key = self.pub_root_key_c.get_X_Y()
 self.pub_root_key_perm = self.pub_root_key_c.get_permission()
 self.pub_root_key_id = self.pub_root_key_c.get_ID()
 self.pub_root_key_type = self.pub_root_key_c.get_content_type()

self.pub_CSK_c = self.hsm_manager.get_public_key(args.code_signing_key)
common_util.assert_in_error(self.pub_CSK_c != None, \
 "Cannot retrieve public CSK")
 self.pub_CSK = self.pub_CSK_c.get_X_Y()
 self.pub_CSK_perm = self.pub_CSK_c.get_permission()
 self.pub_CSK_id = self.pub_CSK_c.get_ID()
 self.pub_CSK_type = self.pub_CSK_c.get_content_type()

sha = sha256(block0.data).digest()
rs = self.hsm_manager.sign(sha, args.code_signing_key)
sha = sha256(csk_body.data).digest()
rs = self.hsm_manager.sign(sha, args.root_key)

3.11. PACSign Man Page

PACSign man page is reproduced here for convenience.

SYNOPSIS
python PACSign.py [-h] {FIM,SR,BBS,BMC,BMC_FW,AFU,PR,GBS} ...
python PACSign.py <CMD> [-h] -t {UPDATE,CANCEL,RK_256,RK_384} -H HSM_MANAGER [-
C HSM_CONFIG] [-r ROOT_KEY] [-k CODE_SIGNING_KEY] [-d CSK_ID] [-i INPUT_FILE] [-
o OUTPUT_FILE] [-y] [-v]

DESCRIPTION
PACSign is a utility designed to insert proper authentication markers on
bitstreams targeted for the PACs. To accomplish this, it uses a root key and an
optional code signing key to digitally sign the bitstreams to validate their
origin. The PACs will not accept loading bitstreams without proper
authentication.
The current PACs only support elliptical curve keys with the curve type
secp256r1 or prime256v1. PACSign is distributed with managers for both OpenSSL
and PKCS #11.

BITSTREAM TYPES
The first required argument to PACSign is the bitstream type identifier.

{SR,FIM,BBS,BMC,BMC_FW,PR,AFU,GBS}

Allowable image types. FIM and BBS are aliases for SR, BMC_FW is an alias for
BMC, and AFU and GBS are aliases for PR.

SR (FIM, BBS)

3. Intel FPGA PAC Security Flow

683519 | 2020.09.08

Send Feedback Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Static FPGA image

BMC(BMC_FW)

BMC image, including firmware for some PACs

PR (AFU, GBS)

Reconfigurable FPGA image

REQUIRED OPTIONS
All bitstream types are required to include an action to be performed by
PACSign and the name and optional parameter file for a key signing module.

-t, --cert_type <type>

Values must be one of UPDATE, CANCEL, RK_256, or RK_384[^1].
`UPDATE` - add authentication data to the bitstream.
`CANCEL` - create a code signing key cancellation bitstream.
`RK_256` - create a bitstream to program a 256-bit root key to the device.
`RK_384` - create a bitstream to program a 384-bit root key to the device.
[^1]:Current PACs do not support 384-bit root keys.

-H, --HSM_manager <module>

The module name for a manager that is used to interface to an HSM. PACSign
supplies both openssl_manager and pkcs11_manager to handle keys and signing
operations.

-C, --HSM_config <cfg> (optional)

The argument to this option is passed verbatim to the specified HSM manager.
For pkcs11_manager, this option specifies a JSON file describing the PKCS #11
capable HSM's parameters.

OPTIONS
-r, --root_key <keyID>

The key identifier recognizable to the HSM manager that identifies the root key
to be used for the selected operation.

-k, --code_signing_key <keyID>

The key identifier recognizable to the HSM manager that identifies the code
signing key to be used for the selected operation.

-d, --csk_id <csk_num>

Only used for type CANCEL and is the key number of the code signing key to
cancel.

-i, --input_file <file>

Only used for UPDATE operations. Specifies the file name containing the data to
be signed.

-o, --output_file <file>

Specifies the name of the file to which the signed bitstream is to be written.

-y, --yes

Silently answer all queries from PACSign in the affirmative.

-v, --verbose

Can be specified multiple times. Increases the verbosity of PACSign. Once
enables non-fatal warnings to be displayed; twice enables progress information.
Three or more occurrences enables very verbose debugging information.

3. Intel FPGA PAC Security Flow

683519 | 2020.09.08

Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

NOTES
Different certification types require different sets of options. The table
below describes which options are required based on certification type:

UPDATE
 root_key code_signing_key csk_id input_file output_file
SR Optional[^2] Optional[^2] No Yes Yes
BMC Optional[^2] Optional[^2] No Yes Yes
PR Optional[^2] Optional[^2] No Yes Yes

CANCEL
 root_key code_signing_key csk_id input_file output_file
SR Yes No Yes No Yes
BMC Yes No Yes No Yes
PR Yes No Yes No Yes

RK_256 / RK_384[^1]
 root_key code_signing_key csk_id input_file output_file
SR Yes No No No Yes
BMC Yes No No No Yes
PR Yes No No No Yes
[^2]: For UPDATE type, both keys must be specified to produce an authenticated
bitstream. Omitting one key generates a valid, but unauthenticated bitstream
that can only be loaded on a PAC with no root key programmed for that type.

EXAMPLES
The following command will generate a root hash programming PR bitstream. The
generated file can be given to fpgasupdate to program the root hash for PR
operations into the device flash. Note that root hash programming can only be
done once on a PAC.

python PACSign.py PR -t RK_256 -o pr_rhp.bin -H openssl_manager -r
key_pr_root_public_256.pem

The following command will add authentication blocks to hello_afu.gbs signed by
both provided keys and write the result to s_hello_afu.gbs. If the input
bitstream were already signed, the old signature block is replaced with the
newly-generated block.

python PACSign.py PR -t update -H openssl_manager -i hello_afu.gbs -o
s_hello_afu.gbs -r key_pr_root_public_256.pem -k key_pr_csk0_public_256.pem

The following command will generate a code signing key cancellation bitstream
to cancel code signing key 4 for all BMC operations. CSK 4 bitstreams that
attempt to load BMC images will be rejected by the PAC.

python PACSign.py BMC -t cancel -H openssl_manager -o csk4_cancel.gbs -r
key_bmc_root_public_256.pem -d 4

3.12. Accessing Intel FPGA PAC N3000 Version and Authentication
Information

Throughout product development and deployment, you may want to:

• Verify the version of Intel FPGA PAC with which you are developing or deploying

• Identify or verify the root entry hash of your FPGA SR user image

• Collect data about the number of times the Staging flash has been programmed to
assess any potential threats like flash wear-out

• Determine all cancellation CSK IDs you used for your FPGA SR user image

OPAE software provides three ways to obtain version or authentication information:

3. Intel FPGA PAC Security Flow

683519 | 2020.09.08

Send Feedback Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• fpgainfo security command

• sysfs files

• bitstreaminfo tool

For all three methods explained in the following sections, use the BMC root entry hash
to identify the version of the Intel FPGA PAC N3000. Each Intel FPGA PAC N3000 has a
unique BMC root entry hash.

Compare your BMC root entry hash output to the following table to identify your Intel
FPGA PAC N3000 version.

Table 6. BMC Root Entry Hash Identifier for Intel FPGA PAC N3000

Platform MMID
(found on side cover of the Intel

FPGA PAC)

BMC Root Entry Hash

Intel FPGA PAC N3000-1 999H1K (8 x 10G) 0x757f524c2f45db58ac2a6c93e72
b9167149979b795195d09d5e2efad
82f2b031Intel FPGA PAC N3000-2 999HGN (2 x 2 x 25G)

Intel FPGA PAC N3000-N 999PJD (2x2x25G, NEBS-friendly) 0xec0f42d3af138e3eca7141107f7
fed5f7c13846fadbba884e51ad26b
f36a3d21

3.12.1. Using fpgainfo security Command

The fpgainfo security command provides the following key identifying
information for your Intel FPGA PAC and bitstreams:

Output Description

FIM/SR root entry hash Root entry hash programmed by you. If you have not programmed the FPGA SR user image
root entry hash, this output reports as “hash not programmed.”

BMC root entry hash Root entry hash programmed by Intel.

PR root entry hash Not applicable for Intel FPGA PAC N3000 and reports “hash not programmed” in output.

BMC flash update counter Indicates how many times the BMC flash has been updated. This data can be useful in
detecting threats.
Note: When the BMC flash counter reaches 1000, the Intel MAX 10 BMC does not allow writes

for 30 seconds after device startup and between updates. When the BMC flash counter
reaches 2000, the Intel MAX 10 BMC does not allow writes for 60 seconds after device
startup and between updates.

FIM/SR CSK IDs cancelled Indicates the IDs of the FIM code signing keys that are cancelled.

BMC CSK IDs cancelled Indicates the IDs of the BMC code signing keys that are cancelled.

AFU CSK IDs cancelled Not applicable for Intel FPGA PAC N3000 and reports “None”

Because partial reconfiguration is not supported for the Intel FPGA PAC N3000, you
can ignore the output for “PR root entry hash” and “AFU CSK IDs cancelled”.

Using this command requires sudo or root privileges on your host.

$ sudo fpgainfo security

Board Management Controller, MAX10 NIOS FW version D.2.1.24
Board Management Controller, MAX10 Build version D.2.0.7
//****** SECURITY ******//
Object Id : 0xEC00001

3. Intel FPGA PAC Security Flow

683519 | 2020.09.08

Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

PCIe s:b:d.f : 0000:8a:00.0
Device Id : 0x0b30
Numa Node : 1
Ports Num : 01
Bitstream Id : 0x2300011001030F
Bitstream Version : 0.2.3
Pr Interface Id : f3c99413-5081-4aad-bced-07eb84a6d0bb
FIM/SR root entry hash : hash not programmed
BMC root entry hash :
0xec0f42d3af138e3eca7141107f7fed5f7c13846fadbba884e51ad26bf36a3d21
PR root entry hash : hash not programmed
SMB parameters update counter(2) : 0
User flash update counter : 1
FIM/SR CSK IDs canceled : None
BMC CSK IDs canceled : None
AFU CSK IDs canceled : None

3.12.2. Reading sysfs Files for Identifying Information

The information provided by the fpgainfo security command is also available in
sysfs entries. The sysfs entries are found in two locations:

1. /sys/class/ifpga_sec_mgr/ifpga_sec<X>/security

2. /sys/class/fpga/intel-fpga-dev.<X>/intel-fpga-fme.<X>/spi-
altera.<X>.auto/spi_master/spiX/spi<X>.<X>/ifpga_sec_mgr/
ifpga_sec<X>/security

Note: The <X> found in the following paths is a numeric value that is assigned by the kernel
and is indeterminate.

The first pathname above uses a symlink to reference the same location as the second
pathname. To correlate the two pathnames above, type:

ls -l /sys/security/ifpga_sec_mgr/ifpga_sec<X>

A listing of this directory displays the files in the table below:

Table 7. Sysfs File List

Sysfs File Output Description File Data Format

sr_root_hash SR root entry
hash

Root entry hash programmed by you. If
you have not programmed the FPGA SR
user image root entry hash, this output
reports as “hash not programmed.”

Long hexadecimal output
prefixed with “0x” or
“hash not programmed” if
the bitstreams is
unsigned.

bmc_root_hash BMC root
entry hash

Root entry hash programmed by Intel. Long hexadecimal output
prefixed with “0x".

pr_root_hash PR root entry
hash

Not applicable for Intel FPGA PAC N3000
and reports “hash not programmed” in
output.

N/A

user_flash_update_counter User Flash
update
counter

Indicates how many times the staging
area flash is updated. has been updated.
This data can be useful in detecting
threats.

Single, numeric value

continued...

(2) The SMB parameters update counter is not used and does not increment.

3. Intel FPGA PAC Security Flow

683519 | 2020.09.08

Send Feedback Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Sysfs File Output Description File Data Format

Note: When the staging area flash
counter reaches 1000, the Intel
MAX 10 BMC does not allow writes
for 30 seconds after device
startup and between updates.
When the BMC flash counter
reaches 2000, the Intel MAX 10
BMC does not allow writes for 60
seconds after device startup and
between updates.

sr_canceled_csks SR CSK IDs
canceled

Indicates the IDs of the FIM code signing
keys that are cancelled.

Comma-separated list of
decimal numbers and
ranges, such as: 0, 3-6,
8-10

bmc_canceled_csks BMC CSK IDs
canceled

Indicates the IDs of the BMC code signing
keys that are cancelled.

Comma-separated list of
decimal numbers and
ranges, such as: 0, 3-6,
8-10

pr_canceled_csks AFU CSK IDs
canceled

Not applicable for Intel FPGA PAC N3000. Comma-separated list of
decimal numbers and
ranges, such as: 0, 3-6,
8-10

3.12.3. Using bitstreaminfo Tool

The bitstreaminfo tool also displays authentication information for *.bin files.
Information includes any JSON header strings and authentication header block
information. For FPGA SR user image bitstreams, the bitstreaminfo command also
displays a small portion of the payload for FPGA SR user image bitstreams. The
bitstreaminfo tool requires sudo or root privileges on your host:

$ sudo bitstreaminfo <file>

An example:

$ sudo bistreaminfo firmware.bin

This command displays the Block 0 and Block 1 content prepended by the PACSign
tool to the FPGA SR user image. Depending on if your bitstream is signed or unsigned
Block 1 output varies:

• Unsigned bitstream: Block 1 output reports 0x0 for Root public key X,Y and Code
signing key X,Y.

• Signed bitstream: Block 1 output reports a value for Root public key X,Y and Code
Signing key X,Y.

The magic number output in Block 0 and 1 are static values populated by PACSign.

Table 8. Block 0 Fields

Parameter Description

Content length Indicates the length of the FPGA SR user image. PACSign performs an internal check to see if the
length is within the maximum length for Intel FPGA PAC N3000.

Content type SR or BMC

continued...

3. Intel FPGA PAC Security Flow

683519 | 2020.09.08

Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Parameter Description

Cert type For an FPGA SR user image, Cert type can be:
• Update : Unsigned/signed FPGA SR user image
• Root Key Hash Programming : Root entry hash bitstream
• Cancellation Certificate : Cancelled Code Signing key ID bitstream for FPGA SR user image. After

you program a cancellation certificate, the Intel FPGA PAC prohibits you from loading any FPGA SR
user image that was signed with the cancelled CSK ID.

For an Intel-provided bitstream, Cert type can be:
• Update : Signed BMC firmware or unsigned FPGA SR user image
• Cancellation Certificate : Cancelled Code Signing key ID bitstream for BMC. After you program a

cancellation certificate, the Intel FPGA PAC prohibits you from loading any BMC bitstream that was
signed with the cancelled CSK ID.

Protected
content
SHA-256

SHA-256 is computed over the entire protected bitstream and it is compared against the SHA-256
calculated by PACSign and programmed into Block 0. You can check if bitstreaminfo reports a
Match as shown below.

Protected
content
SHA-384

SHA-384 is computed over the entire protected bitstream and it is compared against the SHA-256
calculated by PACSign and programmed into Block 0. You can check if bitstreaminfo reports a
Match as shown below.
Note: Current Intel FPGA PAC N3000 versions do not support 384 bit root key but the tool computes

the SHA-384 on the protected content.

Table 9. Block 1 Fields

Parameter Description

Root Entry Permissions Constant value: 0xffffffff

Root Entry Key ID Constant value: 0xffffffff

Root public key x,y Value populated if bitstream was signed using root key and CSK.

Expected root entry hash Hash of all the root fields in Block 1 are computed. You can visually compare this against the
FPGA SR user image root entry hash that is programmed into the card. fpgainfo security
displays the FPGA SR user image root entry hash. If fpgainfo security reports "FIM/SR
root entry hash not programmed", then the bitstreaminfo tool skips the compatibility check.

CSK key ID The CSK ID can range from 0 - 127. fpgainfo security displays a list of CSK IDs canceled.
If bitstream uses a CSK ID that matches the cancelled CSK ID, fpgasupdate prohibits
programming the bitstream.

Code signing key x,y Value reported if Bitstream was signed using root key and CSK.

Signature R, S Signature over hash of CSK Public Key using private root key. Your HSM populates this
signature.

Expected CSK hash This field varies when the CSK ID changes. It is a hash of the CSK fields.

Signature R, S Signature over hash of Block 0 using CSK private key.

The signature along with CSK fields help verify the bitstream.

The sample below show bitstreaminfo output using the signed 2 x 2 x 25G factory
bitstream:

$ sudo bitstreaminfo $N3000_PLATFORM_ROOT/bin/sr_vista_rot_2x2x25G-v1.3.16.bin
File $N3000_PLATFORM_ROOT/bin/sr_vista_rot_2x2x25G-v1.3.16.binBlock 0:
 Block 0 magic = 0xb6eafd19
 Content length = 0x02a86000
 Content type = SR
 Cert type = UPDATE
 Protected content SHA-256:
 0xc10a77f9162945ab45dd943ca136e13f1b6d5278be722ad7519fbafacdedc73f
 Calculated protected content SHA-256:
 0xc10a77f9162945ab45dd943ca136e13f1b6d5278be722ad7519fbafacdedc73f

3. Intel FPGA PAC Security Flow

683519 | 2020.09.08

Send Feedback Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 Match
 Protected content SHA-384:

0x226a5f616c7b69f806da8b03316307c19e364449b46787d24e57bedadd9c9c3aa0510fa958b0d0
4fa5fec8b5465eb90c
 Calculated protected content SHA-384:

0x226a5f616c7b69f806da8b03316307c19e364449b46787d24e57bedadd9c9c3aa0510fa958b0d0
4fa5fec8b5465eb90c
 Match
Block 1:
 Block 1 magic = 0xf27f28d7
 Root Entry magic = 0xa757a046
 Root Entry curve magic = 0xc7b88c74
 Root Entry permissions = 0xffffffff
 Root Entry key ID = 0xffffffff
 Root public key X =
0x00
 Root public key Y =
0x00

 Expected root entry hash =
0xf8ff7e0a52a378483c85301df49c7d55ffd26f794121bdb8b102d7e1c3132bb9

 CSK magic = 0x14711c2f
 CSK curve magic = 0xc7b88c74
 CSK permissions = 0xffffffff
 CSK key ID = 0x00000000
 Code signing key X =
0x00
 Code signing key Y =
0x00
 CSK signature magic = 0xde64437d
 Signature R =
0x00
 Signature S =
0x00

 Expected CSK hash =
0xbe8a02e7932d98aff66584598978d84412e3c641927efac2cb786a1754cfcd4e

 Block 0 Entry magic = 0x15364367
 Block 0 Entry signature magic = 0xde64437d
 Signature R =
0x00
 Signature S =
0x00
Payload:
 80 20 01 00 3a 65 80 00 20 00 00 00 ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

 ...
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

For more examples of bitstreaminfo command, see Appendix A.

3. Intel FPGA PAC Security Flow

683519 | 2020.09.08

Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Using fpgasupdate

Use the fpgasupdate command to securely update the following files in flash:

• BMC Nios firmware and Intel MAX 10 FPGA images

• FPGA SR user images

When you call fpgasupdate the BMC orchestrates the update.

• The BMC restricts all access to the flash until the fpgasupdate tool sends a
request to the BMC to begin the update process.

• The BMC rejects an update request if another update is currently in progress. The
BMC monitors flash write and update counts and delays an update 30 seconds if
more than 1,000 updates have occurred, and 60 seconds if more than 2,000
updates have occurred.

• The BMC grants access only to a staging area in the flash, and only for enough
time for the host to write an update into the staging area.

• The BMC then restricts all flash write access to ensure the update image cannot be
changed during or after the authentication process.

• During the fpgasupdate process, the Nios in the BMC stops polling the sensors
and updating the platform level data model (PLDM) registers but responds to
PLDM requests. Thus, any PLDM reads or fpgad polling during fpgasupdate
returns stale data from before the update began.

• If authentication is successful, the BMC copies the image from the staging area
into the appropriate section in flash.

To use the command type:

$ sudo fpgasupdate [--log-level=<level>] file [bdf]

where the following options are as follows:

Table 10. fpgasupdate Options

Parameters Options Notes

level state, ioctl, debug, info, warning, error,
critical. Default value is state.

N/A

file The secure update file that you
program in the Intel FPGA PAC

N/A

[bdf]
Note: You must provide the BDF

assigned to the PCIe DevID
0b30 on your system.

[ssss:]bb:dd:f, corresponding to
PCIe segment, bus, device, function.
The segment is optional; if omitted, a
segment of 0000 is assumed.

If there is only one Intel FPGA PAC in
the system, then bdf may be omitted.
In this case, fpgasupdate determines
the address automatically.

683519 | 2020.09.08

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

To program your FPGA SR user image after an fpgasupdate, type the following
command:

$ sudo rsu bmcimg 3e:00.0

Related Information

Intel Acceleration Stack User Guide: Intel FPGA Programmable Acceleration Card
N3000

4.1. Troubleshooting

fpgasupdate provides descriptive errors when it cannot complete the requested
operation.

When using fpgasupdate to program bitstreams created or signed with PACSign, the
tool may reject the bitstream if, for example, there was an error in the signing process
or if the signed bitstream is corrupted. The OPAE driver reports the BMC doorbell and
authentication status register values into the system messages log. You may find this
log file in a location such as /var/log/messages or /etc/syslog depending on the
OS you are using. The error entry contains the keywords intel-max10. An example
of output in the log file might look something like this:

[4971.546624] intel-max10 spi2.0: RSU error status: 8'h10022104

[4971.548681] intel-max10 spi2.0: RSU auth result: 8'h00000011

In this example the error status value, bit[23:16] is the RSU error value to reference
in the BMC Doorbell Register Values and Error Descriptions table.

You may use the following tables to decode the authentication status and associated
errors.

Table 11. BMC Doorbell Register Values and Error Descriptions

RSU-error [23:16] Value Status Name Status Description Corrective Action

8'h00 Normal status - Not applicable.

8'h01 Host timeout Flow Error: Host timeout
sending bitstream. Possible
OS or system issue.

Attempt sending bitstream
again.

8'h02 Authentication failure - Ensure bitstream is properly
signed with the correct keys.

8'h03 Image copy failure Flow Error: Image copy
failure

Attempt copy again. If issue
persists, contact Intel
support.

8'h04 Fatal, error, Nios boot-up
failure

- Contact Intel support.

8'h05 Reject C827 Retimer
EEPROM update

- Ensure installed retimer
version is actually older than
the attempted updated
version.

8'h06 Staging area non-
incremental write failure

- Contact Intel support.

8'h07 Staging area erase failure - Contact Intel support.

continued...

4. Using fpgasupdate

683519 | 2020.09.08

Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

Send Feedback

36

https://www.intel.com/content/www/us/en/programmable/documentation/xgz1560360700260.html#xeu1570719737646
https://www.intel.com/content/www/us/en/programmable/documentation/xgz1560360700260.html#xeu1570719737646
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

RSU-error [23:16] Value Status Name Status Description Corrective Action

8'h08 Staging area write wearout - Contact Intel support.

8'h80 Nios boot OK - Not applicable.

8'h81 Update OK Update image okay Not applicable.

8'h82 Factory OK Factory image okay Not applicable.

8'h83 Update Failure - Contact Intel support.

8'h84 Factory Failure - Contact Intel support.

8'h85 Nios Flash Open Error - Contact Intel support.

8'h86 FPGA Flash Open Error - Contact Intel support.

Others Reserved - -

The errors in the following Authentication Status Register table are for failures that
occur when programming the root key hash bitstream or the cancellation key
bitstream. These error types might occur if for example a root entry hash bitstream is
signed with the incorrect key. These registers do not capture errors for signed FPGA
SR user image bitstream programming.

Table 12. Authentication Status Register Values and Error Descriptions

Authentication Status
Value

Error Name Error Description Corrective Action

32'h00000000 Authenticate Pass Authenticate Pass Not applicable.

32'h00000001 Block0 Magic value error Bitstream Format Error:
Block 0 bad magic number.
Indicates bitstream
corruption.

Ensure bitstream is properly
signed with the correct keys.

32'h00000002 Block0 ConLen error Bitstream Format Error:
Block 0 content length error.
Indicates bitstream
corruption.

Ensure bitstream is properly
signed with the correct keys.

32'h00000003 Block0 ConType B[7:0] > 2 Bitstream Format Error:
Block 0 content type error.
Indicates bitstream
corruption.

Ensure bitstream is properly
signed with the correct keys.

32'h00000004 Block1 Magic value error Bitstream Format Error:
Block 1 bad magic number.
Indicates bitstream
corruption.

Ensure bitstream is properly
signed with the correct keys.

32'h00000005 Root Entry Magic value error Bitstream Format Error:
Root entry bad magic
number. Indicates bitstream
corruption.

Ensure bitstream is properly
signed with the correct keys.

32'h00000006 Root Entry Curve Magic
value error

Bitstream Format Error:
Root entry bad curve magic
number. Indicates bitstream
corruption.

Ensure bitstream is properly
signed with the correct keys.

32'h00000007 Root Entry Permission error Root entry bad permissions.
Indicates bitstream
corruption.

Ensure bitstream is properly
signed with the correct keys.

continued...

4. Using fpgasupdate

683519 | 2020.09.08

Send Feedback Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Authentication Status
Value

Error Name Error Description Corrective Action

32'h00000008 Root Entry Key ID error Bitstream Format Error:
Root entry bad key ID.
Indicates bitstream
corruption.

Ensure bitstream is properly
signed with the correct keys.

32'h00000009 CSK Entry Magic value error Bitstream Format Error: CSK
bad magic number. Indicates
bitstream corruption.

Ensure bitstream is properly
signed with the correct keys.

32'h0000000A CSK Entry Curve Magic value
error

Bitstream Format Error: CSK
bad curve magic number.
Indicates bitstream
corruption.

Ensure bitstream is properly
signed with the correct keys.

32'h0000000B CSK Entry Permission error Authentication Error: CSK
bad permission. Indicates
bitstream corruption.

Ensure bitstream is properly
signed with the correct keys.

32'h0000000C CSK Entry Key ID error Bitstream Format Error: CSK
invalid key ID, Indicates
bitstream corruption.

Ensure bitstream is properly
signed with the correct keys.

32'h0000000D CSK Entry Signature Magic
value error

Bitstream Format Error: CSK
bad signature magic
number. Indicates bitstream
corruption.

Ensure bitstream is properly
signed with the correct keys.

32'h0000000E Block0 Entry Magic value
error

Bitstream Format Error:
Block 0 entry bad magic
number. Indicates bitstream
corruption.

Ensure bitstream is properly
signed with the correct keys.

32'h0000000F Block0 Entry Signature
Magic value error

Bitstream Format Error:
Block 0 entry bad signature
magic number. Indicates
bitstream corruption.

Ensure bitstream is properly
signed with the correct keys.

32'h00000010 Root Entry Hash bitstream
not programmed for RSU
and Cancellation

Authentication error:
Cancellation attempted with
no root entry hash bitstream
programmed.

Program root entry hash
bitstream.

32'h00000011 Root Entry verify SHA failed Authentication Error: Root
hash mismatch.

Ensure bitstream is properly
signed with the correct keys.

32'h00000012 CSK Entry verify ECDSA and
SHA failed

Authentication Error: CSK
signature invalid. Indicates
CSK or root entry hash
tampering.

Ensure bitstream is properly
signed with the correct keys.

32'h00000013 Block0 Entry verify ECDSA
and SHA failed

Authentication Error: Block 0
entry signature invalid. May
indicate image tampering.

Ensure bitstream is properly
signed with the correct keys.

32'h00000014 KEY ID of authenticate blob
is invalid

Bitstream Format Error: CSK
invalid key ID. Indicates you
are using an ID value
greater than what is
allowed.

Ensure bitstream is properly
signed with the correct keys.

32'h00000015 KEY ID is cancelled Authentication Error: CSK
canceled. Indicates you are
attempting to program an
image with a cancelled CSK.

Ensure bitstream is properly
signed with the correct keys.

continued...

4. Using fpgasupdate

683519 | 2020.09.08

Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Authentication Status
Value

Error Name Error Description Corrective Action

32'h00000016 Update content SHA verify
failed

Authentication Error:
Payload SHA mismatch. May
indicate tampering of the
bitstream.

Verify correctness of
bitstream; may need to
resign.

8'h00000017 Cancellation content SHA
verify failed

Authentication Error:
Payload SHA mismatch. May
indicate tampering of the
cancellation certificate.

Verify correctness of
bitstream; may need to
resign.

8'h00000018 HASH Programming content
SHA verify failed

Authentication Error:
Payload SHA mismatch. May
indicate tampering of the
root key.

Verify correctness of
bitstream; may need to
resign.

8'h00000019 Invalid cancellation ID of
cancellation certificate

Bitstream Format Error: CSK
invalid key ID

Verify correctness of
bitstream; may need to
resign.

8'h0000001A KEY hash has been
programmed for KEY hash
programming certificate

Authentication Error:
Attempt to program root
entry hash when the root
entry hash bitstream has
already been programmed.

You may only program root
entry hash bitstream one
time.

8'h0000001B Invalid operation of Block0
ConType

- Contact Intel support.

8'h000000FF Generic Authentication
Failure

- Contact Intel support.

4. Using fpgasupdate

683519 | 2020.09.08

Send Feedback Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Document Revision History for Security User Guide

Document
Version

Changes

2020.06.15 • Added the following sections:
— Accessing Intel FPGA PAC N3000 Version and Authentication Information

• Using fpgainfo security Command
• Reading sys files for Identifying Information
• Using bitstreaminfo Tool

— Appendix A: bitstream Tool Examples
• Added a new fpgainfo security command

2019.12.12 Modified rsu command in Authentication and Using fpgasupdate sections.

2019.11.25 Initial release.

683519 | 2020.09.08

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

A. bitstreaminfo Tool Examples

Output example for CSK1 cancellation certificate:

$ bitstreaminfo ssl_csk1_cancel.bin

Output:
File ssl_csk1_cancel.bin:
Block 0:
 Block 0 magic = 0xb6eafd19
 Content length = 0x00000080
 Content type = SR
 Cert type = CANCEL
Protected content SHA-256:
0xed4fc1d85afa5175e4973c9780b78fa000f070c00230ec18d6190133cb915db5
Calculated protected content SHA-256:
0xed4fc1d85afa5175e4973c9780b78fa000f070c00230ec18d6190133cb915db5

 Match

Protected content SHA-384:
0x23c1a67cdd52bf7c6a4f34ebc96b64e5d51d3010ab7754572007e81701b6eb4bcedad337ccde56
3817a19a1e17601a31

Calculated protected content SHA-384:

0x23c1a67cdd52bf7c6a4f34ebc96b64e5d51d3010ab7754572007e81701b6eb4bcedad337ccde56
3817a19a1e17601a31
 Match
Block 1:
 Block 1 magic = 0xf27f28d7
 Root Entry magic = 0xa757a046
 Root Entry curve magic = 0xc7b88c74
 Root Entry permissions = 0xffffffff
 Root Entry key ID = 0xffffffff
 Root public key X =
0xd562f7c475598a44f4cfb3b96e29822a11b823873da1600660a1f2ef7460c109
 Root public key Y =
0x9dab9ea9cb25505c9b40ef509245bb23fd9dcdfa3c9f2d7250e9e8063527ef11

 Expected root entry hash =
0xe9e618adf1818bf0327cd993a4f706451e877d046283a7bbf5b4df1a3fcc5dad
 No CSK

 Block 0 Entry magic = 0x15364367
 Block 0 Entry signature magic = 0xde64437d
 Signature R =
0x1a0d878aebe9bf0a719ca7c1f33fec44e1357f85b54063d79999bff2aa07cdd6
 Signature S =
0x46bd1dac9937a847bb3620559901ed3e57a137384eef2b1994d4b3d4cc2f5ad8
Payload:
 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

683519 | 2020.09.08

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Output example for unsigned Intel Arria 10 GT Bitstream:

$ bitstreaminfo sr_vista_rot_4x25G-v1.3.15.bin
File sr_vista_rot_4x25G-v1.3.15.bin:
Block 0:
 Block 0 magic = 0xb6eafd19
 Content length = 0x02b00000
 Content type = SR
 Cert type = UPDATE
 Protected content SHA-256:
 0xe4ecd5f6b332bba7b03bcdbe5f9c28317dda59e403148cedec4550f5fa5644b4
 Calculated protected content SHA-256:
 0xe4ecd5f6b332bba7b03bcdbe5f9c28317dda59e403148cedec4550f5fa5644b4
 Match
 Protected content SHA-384:

0x4c56e31d8a4d37d3cdab616a8d6a73a6cce12bd9f0737a4676b3a736bfe4425aaabc046a1c3cc3
713cae90dd9d1136ef
 Calculated protected content SHA-384:

0x4c56e31d8a4d37d3cdab616a8d6a73a6cce12bd9f0737a4676b3a736bfe4425aaabc046a1c3cc3
713cae90dd9d1136ef
 Match
Block 1:
 Block 1 magic = 0xf27f28d7
 Root Entry magic = 0xa757a046
 Root Entry curve magic = 0xc7b88c74
 Root Entry permissions = 0xffffffff
 Root Entry key ID = 0xffffffff
 Root public key X =
0x00
 Root public key Y =
0x00

 Expected root entry hash =
0xf8ff7e0a52a378483c85301df49c7d55ffd26f794121bdb8b102d7e1c3132bb9

 CSK magic = 0x14711c2f
 CSK curve magic = 0xc7b88c74
 CSK permissions = 0xffffffff
 CSK key ID = 0x00000000
 Code signing key X =
0x00
 Code signing key Y =
0x00
 CSK signature magic = 0xde64437d
 Signature R =
0x00
 Signature S =
0x00

 Expected CSK hash =
0xbe8a02e7932d98aff66584598978d84412e3c641927efac2cb786a1754cfcd4e

 Block 0 Entry magic = 0x15364367
 Block 0 Entry signature magic = 0xde64437d
 Signature R =
0x00
 Signature S =
0x00
Payload:
 80 20 01 00 3a 65 80 00 20 00 00 00 ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

A. bitstreaminfo Tool Examples

683519 | 2020.09.08

Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 ...
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

Output example for signed Intel Arria 10 GT Bitstream:

$ bitstreaminfo signed_sr_vista_rot_4x25G-v1.3.15.bin
File unsigned_sr_vista_rot_4x25G-v1.3.15.bin:
Block 0:
 Block 0 magic = 0xb6eafd19
 Content length = 0x02b00000
 Content type = SR
 Cert type = UPDATE
 Protected content SHA-256:

0xe4ecd5f6b332bba7b03bcdbe5f9c28317dda59e403148cedec4550f5fa5644b4
 Calculated protected content SHA-256:

0xe4ecd5f6b332bba7b03bcdbe5f9c28317dda59e403148cedec4550f5fa5644b4
 Match
 Protected content SHA-384:

0x4c56e31d8a4d37d3cdab616a8d6a73a6cce12bd9f0737a4676b3a736bfe4425aaabc046a1c3cc3
713cae90dd9d1136ef
 Calculated protected content SHA-384:

0x4c56e31d8a4d37d3cdab616a8d6a73a6cce12bd9f0737a4676b3a736bfe4425aaabc046a1c3cc3
713cae90dd9d1136ef
 Match
Block 1:
 Block 1 magic = 0xf27f28d7
 Root Entry magic = 0xa757a046
 Root Entry curve magic = 0xc7b88c74
 Root Entry permissions = 0xffffffff
 Root Entry key ID = 0xffffffff
 Root public key X =
0x09b39cb8cb5c51b649ad6555e0ca1b150932c4289024015f34cd4bb5d47b77f5
 Root public key Y =
0x9a9a9affef8f6b45b0b99a2efaa9c118469e3ea0396cb2fe50247d51fb7dba16

 Expected root entry hash =
0x5c47ce0b1edc53b2bc02bf9b8aecab95b139b1f07f15fd6f25df7eb25942c0e0

 CSK magic = 0x14711c2f
 CSK curve magic = 0xc7b88c74
 CSK permissions = 0xffffffff
 CSK key ID = 0x00000001
 Code signing key X =
0xfed4bf4826cf71c4246c9576892b474b1465bba137e141d1f6731fe03b7c312c
 Code signing key Y =
0x50e784b7209d5c6af35b55f7d140a3b19769d5bc19babd9c9170d05a3822a6d6
 CSK signature magic = 0xde64437d
 Signature R =
0x754ab8c579ac2fd0841fb50c978962f95bbc162ecc9544f1f18b99945cf655fd
 Signature S =
0x9f9af231cd7a39ba1c6d629023f2b4d316e010fd08eca130efbecbf0caf8e83e

 Expected CSK hash =
0xaaaac919f6aecb2532ce6322a76bb57b0f1f285dd4d71d178544ac59f2b78fda

 Block 0 Entry magic = 0x15364367
 Block 0 Entry signature magic = 0xde64437d
 Signature R =
0x680a36f442213783696365604e6789c4b2f6d20b9eb6c8b34abdef6e16bdb1f2
 Signature S =
0xfb2764d6db7eb658cd11f55084e981ba5db229c136e66afe8d1ab9e78f0f7510
Payload:
 80 20 01 00 3a 65 80 00 20 00 00 00 ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

A. bitstreaminfo Tool Examples

683519 | 2020.09.08

Send Feedback Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

 ...
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

Output example for Root Key hash bitstream:

$ bitstreaminfo root_public_program_ssl.bin
File root_public_program_ssl.bin:
Block 0:
 Block 0 magic = 0xb6eafd19
 Content length = 0x00000080
 Content type = SR
 Cert type = Root Entry Hash (256)
 Protected content SHA-256:

0xade5140d232e010fda6b79542d1d9f31a9de413b0a10d32bfd2208b01119d658
 Calculated protected content SHA-256:

0xade5140d232e010fda6b79542d1d9f31a9de413b0a10d32bfd2208b01119d658
 Match
 Protected content SHA-384:

0x033cd07c8917d11242d174f608cc7301051bb0145a13527340fcf0b370f98f88ef795029c6cead
dca27a4d221b1f7035
 Calculated protected content SHA-384:

0x033cd07c8917d11242d174f608cc7301051bb0145a13527340fcf0b370f98f88ef795029c6cead
dca27a4d221b1f7035
 Match
Block 1:
 Block 1 magic = 0xf27f28d7
 No root entry
 No CSK
 No block 0 entry
Payload:
 5c 47 ce 0b 1e dc 53 b2 bc 02 bf 9b 8a ec ab 95
 b1 39 b1 f0 7f 15 fd 6f 25 df 7e b2 59 42 c0 e0
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Output example for BMC RTL/Firmware bitstream from Intel:

$ bitstreaminfo VistaCreekBravoBMCFW_Release_WW13.2.bin
File VistaCreekBravoBMCFW_Release_WW13.2.bin:
Block 0:
 Block 0 magic = 0xb6eafd19
 Content length = 0x000d4e80
 Content type = BMC
 Cert type = UPDATE
 Protected content SHA-256:

0x7f49e08241f8390cc5b939843ecb14af73d464c9aa4998a9aff5cddac26b8bb6
 Calculated protected content SHA-256:

0x7f49e08241f8390cc5b939843ecb14af73d464c9aa4998a9aff5cddac26b8bb6
 Match
 Protected content SHA-384:

0x243d2e99486bb68ede871d6b052cabf0b441b1e0538fec8f8450fec58a4c9537b85f95d473972e
842924c7e334ebbebb

A. bitstreaminfo Tool Examples

683519 | 2020.09.08

Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 Calculated protected content SHA-384:

0x243d2e99486bb68ede871d6b052cabf0b441b1e0538fec8f8450fec58a4c9537b85f95d473972e
842924c7e334ebbebb
 Match
Block 1:
 Block 1 magic = 0xf27f28d7
 Root Entry magic = 0xa757a046
 Root Entry curve magic = 0xc7b88c74
 Root Entry permissions = 0xffffffff
 Root Entry key ID = 0xffffffff
 Root public key X =
0x78a0db7ecef9f13c336e99334d34d10c33829cb290901b48af8c34fce107b3e7
 Root public key Y =
0x57cc5b60b89203bc9d975f59c813d1ffd8499d292b2c42262adb9483167832d4

 Expected root entry hash =
0x77698ea203e459f6cb0e65b54a1dd4ab47a6a6600e7988f723ad89f5b7f3673a

 CSK magic = 0x14711c2f
 CSK curve magic = 0xc7b88c74
 CSK permissions = 0x00000002
 CSK key ID = 0x00000000
 Code signing key X =
0xad481a506b8bf261fd0644eb7f0be98cde8152c015eb17a2d08ebd6b2af131df
 Code signing key Y =
0x2541eaff9213bb26247b593646aa45ce618a46cf5575de9f1ac21563c9f9570c
 CSK signature magic = 0xde64437d
 Signature R =
0xbfaf53b0fe2359ea3c86e2c35103f2a5df021f0231681216ab615a1c5f8255bf
 Signature S =
0xffccfd664e04f5dcef68c16b4d96708a91c59b1c2677ca3b07a7dc227ee5f31c

 Expected CSK hash =
0x6f0b20617a824725757482a23ff39a9b1096aa400436217103ed5a52fde5f52c

 Block 0 Entry magic = 0x15364367
 Block 0 Entry signature magic = 0xde64437d
 Signature R =
0x771201ca87d1622994ad21e8a75a0edb945b42bc885447903487ec79ed399750
 Signature S =
0x27823b355b81f25c996f2298c44fe7fd8cbb9e14f46fa8de6836b807c463632d
Payload:
 00 80 0a 00 80 80 0a 00 8c cd 02 00 50 ff 47 ff
 4d ff 49 c2 43 ff 42 fb ee 1c ae 00 ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

 ...
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

A. bitstreaminfo Tool Examples

683519 | 2020.09.08

Send Feedback Security User Guide: Intel FPGA Programmable Acceleration Card N3000
Variants

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Security%20User%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683519%202020.09.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Security User Guide: Intel FPGA Programmable Acceleration Card N3000 Variants
	Contents
	1. Overview
	1.1. About This Document
	1.2. Prerequisites
	1.3. Related Documentation
	1.4. Glossary

	2. Intel FPGA PAC Security Features
	2.1. Secure Image Updates
	2.2. Anti-Rollback Capability
	2.3. Key Management
	2.4. Authentication
	2.5. Encryption

	3. Intel FPGA PAC Security Flow
	3.1. Installing PACSign
	3.2. PACSign Tool
	3.3. Creating Unsigned Images
	3.4. Using an HSM Manager
	3.5. Creating Keys
	3.5.1. OpenSSL Key Creation
	3.5.2. HSM Key Creation

	3.6. Root Entry Hash Bitstream Creation
	3.7. Signing Images
	3.8. Creating a CSK ID Cancellation Bitstream
	3.9. PACSign PKCS11 Manager *.json Reference
	3.10. Creating a Custom HSM Manager
	3.10.1. HSM_MANAGER.get_public_key(public_key)
	3.10.1.1. PUBLIC_KEY.get_X_Y()
	3.10.1.2. PUBLIC_KEY.get_permission()
	3.10.1.3. PUBLIC_KEY.get_ID()
	3.10.1.4. PUBLIC_KEY.get_content_type()

	3.10.2. HSM_MANAGER.sign(data, key)
	3.10.3. Signing Operation Flow

	3.11. PACSign Man Page
	3.12. Accessing Intel FPGA PAC N3000 Version and Authentication Information
	3.12.1. Using fpgainfo security Command
	3.12.2. Reading sysfs Files for Identifying Information
	3.12.3. Using bitstreaminfo Tool

	4. Using fpgasupdate
	4.1. Troubleshooting

	5. Document Revision History for Security User Guide
	A. bitstreaminfo Tool Examples

