
Intel Acceleration Stack for Intel®
Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Online Version

Send Feedback MNL-1092

ID: 683193

Version: 2019.11.04

https://www.intel.com/content/www/us/en/docs/programmable/683193/current/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P)
Reference Manual.. 3
1.1. About this Document..3

1.1.1. Intended Audience...3
1.1.2. Conventions..3
1.1.3. Related Documentation.. 4
1.1.4. Acronym List for Acceleration Stack for Intel Xeon® CPU with FPGAs Core

Cache Interface (CCI-P) Reference Manual.. 5
1.1.5. Acceleration Glossary... 7

1.2. Introduction..7
1.2.1. FPGA Interface Manager (FIM)...9
1.2.2. Intel FPGA Interface Unit (FIU).. 10
1.2.3. Memory and Cache Hierarchy.. 13

1.3. CCI-P Interface..15
1.3.1. Signaling Information... 16
1.3.2. Read and Write to Main Memory...17
1.3.3. Interrupts... 18
1.3.4. UMsg... 19
1.3.5. MMIO Accesses to I/O Memory.. 20
1.3.6. CCI-P Tx Signals..21
1.3.7. Tx Header Format.. 23
1.3.8. CCI-P Rx Signals..27
1.3.9. Multi-Cache Line Memory Requests...30
1.3.10. Byte Enable Memory Request (Intel FPGA PAC D5005)................................ 32
1.3.11. Additional Control Signals..36
1.3.12. Protocol Flow...37
1.3.13. Ordering Rules...39
1.3.14. Timing Diagram... 45
1.3.15. CCI-P Guidance..47

1.4. AFU Requirements... 47
1.4.1. Mandatory AFU CSR Definitions..48
1.4.2. AFU Discovery Flow..50
1.4.3. AFU_ID.. 50

1.5. Intel FPGA Basic Building Blocks.. 51
1.6. Device Feature List...51
1.7. Document Revision History for Intel Acceleration Stack for Intel Xeon CPU with

FPGAs Core Cache Interface (CCI-P) Reference Manual...56

Contents

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs
Core Cache Interface (CCI-P) Reference Manual

1.1. About this Document

1.1.1. Intended Audience

The intended audience for this document is system engineers, platform architects,
hardware, and software developers.

You must design the hardware AFU to be compliant with the CCI-P specification.

1.1.2. Conventions

Table 1. Document Conventions

Convention Description

Precedes a command that indicates the command is to be
entered as root.

$ Indicates a command is to be entered as a user.

This font Filenames, commands, and keywords are printed in this
font. Long command lines are printed in this font. Although
long command lines may wrap to the next line, the return is
not part of the command; do not press enter.

<variable_name> Indicates the placeholder text that appears between the
angle brackets must be replaced with an appropriate value.
Do not enter the angle brackets.

683193 | 2019.11.04

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

1.1.3. Related Documentation

Table 2. Related Documentation

Document Description

Intel® Software Developers Manual This document contains all three volumes of the Intel 64
and IA-32 Architecture Software Development Manual:
Basic Architecture, Order Number 253665; Instruction Set
Reference A-Z, Order Number 325383; System
Programming Guide, Order Number 325384. Refer to all
three volumes when evaluating your design needs.

Intel Virtualization Technology for Directed I/O Architecture
Specification

This document describes the Intel Virtualization Technology
for Directed I/O (Intel VT for Directed I/O); specifically, it
describes the components supporting I/O virtualization as it
applies to platforms that use Intel processors and core logic
chipsets complying with Intel platform specifications.

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

4

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.1.4. Acronym List for Acceleration Stack for Intel Xeon® CPU with
FPGAs Core Cache Interface (CCI-P) Reference Manual

Table 3. Acronyms
The "A/B" column indicates whether the term applies to:

• A: Intel Xeon® Scalable Platform with Integrated FPGA, referred to as Integrated FPGA Platform
throughout this document.

• B: Intel FPGA Programmable Acceleration Card (Intel FPGA PAC), referred to as Intel FPGA PAC
throughout this document.

• A, B: Both packages

Acronyms Expansion A/B Description

AF Accelerator Function A, B Compiled Hardware Accelerator image implemented in
FPGA logic that accelerates an application.

AFU Accelerator
Functional Unit

A, B Hardware accelerator implemented in FPGA logic
which offloads a computational operation for an
application from the CPU to improve performance.

BBBs Intel FPGA Basic
Building Blocks

A, B Intel FPGA Basic Building Blocks are defined as
components that can be interfaced with the CCI-P
bridge.
For more information, refer to the Basic Building
Blocks (BBB) for OPAE-managed Intel FPGAs web
page.

CA Caching Agent A A caching agent (CA) makes read and write requests
to the coherent memory in the system. It is also
responsible for servicing snoops generated by other
Intel UltraPath Interconnect (Intel UPI) agents in the
system.

CCI-P Core Cache
Interface

A, B CCI-P is the standard interface AFUs use to
communicate with the host.

CL Cache Line A, B 64-byte cache line

DFL Device Feature Lists A, B DFL defines a structure for grouping like functionality
and enumerating them.

FIM FPGA Interface
Manager

A, B The FPGA hardware containing the FPGA Interface Unit
(FIU) and external interfaces for memory, networking,
etc.
The Accelerator Function (AF) interfaces with the FIM
at run time.

FIU FPGA Interface Unit A, B FIU is a platform interface layer that acts as a bridge
between platform interfaces like PCIe, UPI and AFU-
side interfaces such as CCI-P.

KiB 1024 bytes A, B The term KiB is for 1024 bytes and KB for 1000 bytes.
When referring to memory, KB is often used and KiB is
implied. When referring to clock frequency, kHz is
used, and here K is 1000.

Mdata Metadata A, B This is a user-defined field, which is relayed from Tx
header to the Rx header. It may be used to tag
requests with transaction ID or channel ID.

RdLine_I Read Line Invalid A, B Memory Read Request, with FPGA cache hint set to
invalid. The line is not cached in the FPGA, but may
cause FPGA cache pollution.

continued...

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Acronyms Expansion A/B Description

Note: The cache tag tracks the request status for all
outstanding requests on Intel Ultra Path
Interconnect (Intel UPI). Therefore, even
though RdLine_I is marked invalid upon
completion, it consumes the cache tag
temporarily to track the request status over
UPI. This action may result in the eviction of a
cache line, resulting in cache pollution. The
advantage of using RdLine_I is that it is not
tracked by CPU directory; thus it prevents
snooping from CPU.

Note: Cache functionality only applies to Intel Xeon
Processor with Integrated FPGA.

RdLine-S Read Line Shared A Memory read request with FPGA cache hint set to
shared. An attempt is made to keep it in the FPGA
cache in a shared state.

Rx Receive A, B Receive or input from an AFU's perspective

SMBUS System
Management Bus

A The System Management Bus (SMBUS) interface
performs out-of-band temperature monitoring,
configuration during the bootstrap process, and
platform debug purposes.

Tx Transmit A, B Transmit or output from an AFU's perspective

Upstream Direction up to CPU A, B Logical direction towards CPU. Example: upstream
port means port going to CPU.

UMsg Unordered Message
from CPU to AFU

A An unordered notification with a 64-byte payload

UMsgH Unordered Message
Hint from CPU to
AFU

A This message is a hint to a subsequent UMsg. No data
payload.

Intel UPI Intel Ultra Path
Interconnect

A Intel's proprietary coherent interconnect protocol
between Intel cores or other IP.

WrLine_I Write Line Invalid A, B Memory Write Request, with FPGA cache hint set to
Invalid. The FIU writes the data with no intention of
keeping the data in FPGA cache.

WrLine_M Write Line Modified A Memory Write Request, with the FPGA cache hint set
to Modified. The FIU writes the data and leaves it in
the FPGA cache in a modified state.

WrPush_I Write Push Invalid A Memory Write Request, with the FPGA cache hint set
to Invalid. The FIU writes the data into the processor’s
Last Level Cache (LLC) with no intention of keeping
the data in the FPGA cache. The LLC it writes to is
always the LLC associated with the processor where
the DRAM address is homed.

Related Information

Basic Building Blocks (BBB) for OPAE-managed Intel FPGAs

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

6

https://github.com/OPAE/intel-fpga-bbb
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.1.5. Acceleration Glossary

Table 4. Acceleration Stack for Intel Xeon CPU with FPGAs Glossary

Term Abbreviation Description

Intel Acceleration Stack for Intel Xeon
CPU with FPGAs

Acceleration Stack A collection of software, firmware, and
tools that provides performance-
optimized connectivity between an
Intel FPGA and an Intel Xeon
processor.

Intel FPGA Programmable Acceleration
Card (Intel FPGA PAC)

Intel FPGA PAC PCIe* accelerator card with an Intel
FPGA PAC.
Contains a FPGA Interface Manager
(FIM) that connects to an Intel Xeon
processor over PCIe bus.

Intel Xeon Scalable Platform with
Integrated FPGA

Integrated FPGA Platform A platform with the Intel Xeon and
FPGA in a single package and sharing
a coherent view of memory using the
Intel Ultra Path Interconnect (UPI).

1.2. Introduction

CCI-P is a host interface bus for an Accelerator Functional Unit (AFU) with separate
header and data wires. It is intended for connecting an AFU to an FPGA Interface Unit
(FIU) within an FPGA. This document defines the CCI-P protocol and signaling
interface. It includes definitions for request types, header formats, timing diagrams
and memory model.

In addition to the CCI-P signaling and protocol, this document also describes:

1. Mandatory AFU registers required to design a CCI-P compliant AFU.

2. Device Feature Lists (DFLs)—A standard for register organization that promotes
modular design and easy enumeration of AFU features from the software.

3. Intel FPGA Basic Building Blocks (BBBs)—An architecture of defining reusable
FPGA libraries that may consists of hardware and software modules.

The CCI-P offers an abstraction layer that can be implemented on top of a variety of
platform interfaces like PCIe and UPI, thereby enabling interoperability of CCI-P
compliant AFU across platforms.

The table below summarizes the features unique to the CCI-P interface for the AFU.

Table 5. CCI-P Features

Feature Description

MMIO Request—CPU read/write to AFU I/O Memory • MMIO Read payload—4B, 8B
• MMIO Write Payload—4B, 8B, 64B

— MMIO writes could be combined by the x86 write
combining buffer.

— 64B MMIO writes require a CPU with capability of
generation 64B Writes.

— CPU for Integrated FPGA Platform can use AVX512 to
generate 64B MMIO Write.

Memory Request AFU read or write to memory.

continued...

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Feature Description

• Addressing Mode—Physical Addressing Mode
• Addressing Width (CL aligned addresses)—42 bits (CL

address)
• Data Lengths—64 bytes (1 CL), 128 bytes (2 CLs), 256

bytes (4 CLs)
• Byte Addressing—Not supported

FPGA Caching Hint (Integrated FPGA Platform only) The AFU can ask the FIU to cache the CL in a specific state.
For requests directed to VL0, FIU attempts to cache the
data in the requested state, given as a hint. Except for
WrPush_I, cache hint requests on VH0 and VH1 are ignored.
Note: The caching hint is only a hint and provides no

guarantee of final cache state. Ignoring a cache hint
impacts performance but does not impact
functionality.

• <request>_I—No intention to cache
• <request>_S—Desire to cache in shared (S) state
• <request>_M—Desire to cache in modified (M) state

Virtual Channels (VC) Physical links are presented to the AFU as virtual channels.
The AFU can select the virtual channel for each memory
request.
• VL0—Low latency virtual channel (Mapped to UPI) (only

for Integrated FPGA Platform).
• VH0—High latency virtual channel. (Mapped to PCIe0).

This virtual channel is tuned to handle large data
transfers.

• VH1—High latency virtual channel. (Mapped to PCIe1).
This virtual channel is tuned to handle large data
transfers (only for Integrated FPGA Platform).

• Virtual Auto (VA)—FIU implements a policy optimized to
achieve maximum cumulative bandwidth across all
available physical links.
— Latency—Expect to see high variance
— Bandwidth—Expect to see high steady state

bandwidth

UMsg (Integrated FPGA Platform only) Unordered notification directed from CPU to AFU
• UMsgs data payload—64B
• Number of UMsg supported—8 per AFU

Response Ordering Out of order responses

Upstream Requests Yes

Related Information

Intel FPGA Basic Building Blocks on page 51

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2.1. FPGA Interface Manager (FIM)

Figure 1. Overview of FPGA Blocks

FIU FIM

to Intel Xeon

to SDRAM

SMBus

DDR
AFU

PC
Ie

UP
I

CC
I-P

*to storage,
 network

HSSI

EMIF

The Intel FPGA Accelerator package consists of an FIM and an AFU. The FIM consists
of the following:

• FIU

• EMIF for interfacing to external memory

• HSSI for external transceiver interfacing

For more information, refer to your platform for specific details about the FIM
implementation.

The FIU acts like a bridge between the AFU and the platform. Figure 1 on page 9
shows the FIU connection between the PCIe, SMBus for manageability, and the full UPI
stack to the host. In addition, the FIM also owns all hard IPs on FPGA (for example
PLLs), partial reconfiguration (PR) engine, JTAG atom, IOs, and temperature sensors.
The FIM is configured first at boot up and persists until the platform power cycles,
whereas the AFU can be dynamically reconfigured. Intel partial reconfiguration
technology enables the dynamic reconfiguration capability, where the AFU is defined
as a partial reconfiguration region and the FIM is defined as a static region. The
interfaces between AFU and FIU provides hot plug capability to pause the traffic, and
to re-enumerate the AFU after partial reconfiguration.

The FIM may present one or more interfaces to the AFU, depending on the platform
capabilities. This document focuses on CCI-P, an interface for the AFU to communicate
with the Intel Xeon processor. The CCI-P provides address space isolation and
protection using Intel Virtual Technology for Directed I/O (Intel VT-d). The CCI-P has
the same protections that are defined for a PCIe function. An AFU is a single function
device from a PCIe enumeration and VT-d point of view.
The FIU may also implement manageability functions like error monitoring and
reporting, power and temperature monitoring, configuration bootstrap, bitstream
security flows, and remote debug to ease the deployment and management of FPGAs
in a data center environment. In some implementations, FIU may also have an out-of-
band communication interface to the board management controller (BMC).

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2.2. Intel FPGA Interface Unit (FIU)

1.2.2.1. FIU for Intel FPGA PAC

Figure 2. FIU for Intel FPGA PAC Block Diagram

FPGA Interface Unit (FIU)

Intel Xeon Processor
IOMMU

Arbiter

 PCIe
Endpoint

FPGA Management Engine (FME)
1. Thermal monitor
2. Power monitor
3. Performance monitor
4. Partial Reconfiguration
5. Global errors

CCI-P Port
- SignalTAP
- Port reset
- Port errors

PR Unit

AFU

Data Path

Control Path

CC
I-P

The Intel FPGA PAC connects to the Intel Xeon Processor over a PCIe physical link. The
Intel FPGA PAC FIU block diagram in Figure 2 on page 10, shows only the blocks that
map CCI-P to the PCIe link. It does not show FIM blocks for board-local memory going
to the AFU. The FIU for Intel FPGA PAC has a simple function to map one physical link
to CCI-P.

The Intel FPGA PAC FIU maps the CCI-P virtual channels VH0 and VA to the PCIe link.
The virtual auto channel (VA) maps requests across all available channels on any
platform optimally in order to achieve maximum bandwidth.

For more information about virtual channels, refer to the "CCI-P Features Summary"
section. The downstream PCIe control path is address mapped to the FPGA
management engine (FME), CCI-P port and AFU.

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The FME provides capabilities for error, performance, power, thermal monitoring and
partial reconfiguration of the AFU. The CCI-P port module implements the per port
reset, quiesce, error monitoring and remote debug using Signal Tap over network.

1.2.2.2. FIU for Intel Integrated FPGA Platform

Figure 3. FIU for Intel Integrated FPGA Platform Block Diagram

Fabric

SMBus
Slave

PCIe
Gen 3x8

EP0

PCIe
Gen 3x8

EP1

Coherent
Interface

Cache
Controller

UPI 9.2G

Only part of Acceleration
Stack for Intel Xeon Processor
with Integrated FPGA

IOMMU and
Device TLB

FPGA Management
Engine (FME)

1. Thermal monitor
2. Power monitor
3. Performance monitor
4. Partial reconfiguration
5. Global errors

CCI-P Port0
-SignalTap
-Port Reset
-Port Errors

Intel Xeon Processor

Intel FPGA Interface Unit (FIU)

Data Channel

Control Channel

AFU 0

CCI-P

PR Unit

The Integrated FPGA Platform has three links connecting the FPGA to the processor:
one Intel UPI coherent link and two PCIe Gen3x8 links. It is the function of the FIU to
map these three links to the CCI-P interface, such that the AFU sees a single logical
communication interface to the host processor with bandwidth equal to the aggregate
bandwidth across the three links. Figure 1 on page 9 shows only the FIU logic
associated with mapping UPI and PCIe links to CCI-P.

FIU implements the following functionality for providing the CCI-P mapping:

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Single logical upstream link: CCI-P maps the three physical links to four virtual
channels. PCIe0 to VH0, PCIe1 to VH1, UPI to VL0 and all physical links to VA. An
AFU using VA is agnostic of the physical links and it interfaces with a single logical
link that can utilize the total upstream bandwidth available to the FPGA. VA
implements a weighted de-multiplexer to route the requests to all of the physical
links. To design a platform agnostic AFU, the VA virtual channel is the preferred
choice.

• Single point of control: FIU registers a single control interface with the system
software stack. All driver interactions to the FIU are directed to PCIe-0. The AFU is
discovered and enumerated over PCIe-0.

• Single identity for VT-d provides a unified address space: All upstream requests
use a single function number for address translation. For this reason, the Intel
Xeon Scalable Platform with Integrated FPGA disables the IOMMU at PCIe-0 and
PCIe-1 root ports and instead instantiates an IOMMU in FIU. This IOMMU is used
for translating requests going upstream through all three physical links.

Similar to Intel FPGA PAC, the Integrated FPGA Platform also implements a full set of
services provided by the FME and CCI-P ports to deploy and manage the FPGA.

1.2.2.3. Comparison of FIU Capabilities

The following table, provides a comparison of capabilities supported on the Intel FPGA
PAC versus the Integrated FPGA Platform.

Table 6. Comparison of FIU Capabilities

FIU Capability Supported on Intel FPGA PAC Supported on Integrated FPGA
Platform

Unified address space Yes

Intel VT-d for AFU Yes

Partial Reconfiguration Yes

Remote Debug Yes

FPGA Cache Size N/A 128 KiB direct mapped

CCI-P

Memory Mapped I/O (MMIO) read and
write

Yes

AFU interrupts to CPU Yes No

UMsg from CPU to AFU No Yes

CCI-P memory requests

Data Transfer Size 64 bytes (1 CL), 128 bytes (2 CL), 256 bytes (4 CL)

Addressing Mode Physical Addressing Mode

Addressing Width (CL aligned
addresses)

42 bits

Caching Hints No Yes

Virtual Channels VA, VH0 VA, VH0, VH1, VL0

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.2.3. Memory and Cache Hierarchy

The CCI-P protocol provides a cache hint mechanism. Advanced AFU developers can
use this mechanism to tune for performance. This section describes the memory and
cache hierarchy for both the Intel FPGA PAC and Integrated FPGA Platform. The CCI-P
provided control mechanisms are discussed in the "Intel FPGA PAC" and "Integrated
FPGA Platform" sections, below.

Intel FPGA PAC

Figure 4. Intel FPGA PAC Memory Hierarchy

Processor FPGA

AFU

CCI-P

FIU

PCle
RP

DDR

Last
Level
Cache

N
Cores

DRAM

Multi-processor Coherence Domain
PCle RP: PCle Rootport

A.1

PCle 0

A.2 DRAM

AVIMM

B.1

VHO, VA

The above figure shows an Intel FPGA PAC memory and cache hierarchy in a single
processor Intel Xeon platform. Intel FPGA PAC has two memory nodes:

• Processor Synchronous Dynamic Random Access Memory (SDRAM), referred
to as host memory

• FPGA attached SDRAM, referred to as local memory

AFU decides if the request must be routed to local memory or CPU memory.

Local Memory (B.1) is in a separate address space from host memory (A.2). AFU
requests, targeted to local memory, are always serviced directly by the SDRAM
(denoted (B.1) in Figure 4 on page 13).

Note: There is no cache along the local memory access path.

AFU requests targeted to CPU memory over PCIe, can be serviced by the Processor-
side, as shown in Figure 4 on page 13.

For the
Last Level Cache (denoted (A.1))
:

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• A read request received has a lower latency than reading from the
SDRAM (denoted (A.2))
.

• A write request hint can be used to instruct the Last Level Cache how to treat
the data written (for example: cacheable, non-cacheable, and locality).

If a request misses the Last Level Cache, it can be serviced by the SDRAM.

For more information, refer to the WrPush_I request in the CCI-P protocol definition.

Integrated FPGA Platform

Figure 5. Integrated FPGA Platform Memory Hierarchy

Processor FPGA

AFU

CCI-P

FIU
VLO

VHO

VH1

VC Steering

Cache

PCle
RP

DDR

Last
Level
Cache

N
Cores

DRAM

Multi-processor Coherence Domain

PCle RP: PCle Rootport
VC: Virtual Channel

A.2

PCle 1

UPI

PCle 0

A.3

A.1

Figure 5 on page 14 shows the three level cache and memory hierarchy seen by an
AFU in an Integrated FPGA Platform with one Intel Xeon processor. A single processor
Integrated FPGA Platform has only one memory node, the Processor-side:
SDRAM (denoted (A.3))
. The Intel UPI coherent link extends the Intel Xeon processor’s coherency domain to
the FPGA as shown by the green dotted line in Figure 5 on page 14. A UPI caching
agent keeps the FPGA cache in FIU, coherent with the rest of the CPU memory. An
upstream AFU request targeted to CPU memory can be serviced by:

• FPGA Cache (A.1)—Intel UPI coherent link extends the Intel Xeon processor’s
coherency domain to the FPGA cache. Requests hitting in FPGA cache has the
lowest latency and highest bandwidth. AFU requests that use VL0 virtual channel
and VA requests that are selected to use UPI path, look up the FPGA cache first,
and only upon a miss are sent off the chip to the processor.

• Processor-side cache (A.2)—A read request that hits the processor-side cache has
higher latency than FPGA cache, but lower latency than reading from Processor
SDRAM. A write request hint can be used to direct the write to processor-side
cache. For more information, refer to WrPush_I request in CCI-P protocol
definition.

• Processor SDRAM (A.3)—A request that misses the processor-side cache is
serviced by the SDRAM.

The data access latencies increase from (A.1) to (A.3).

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: Most AFUs achieve maximum memory bandwidth by choosing the VA virtual channel,
rather than explicitly selecting using VL0, VH0 and VH1. The VC steering logic
implemented in the FIU has been tuned for the platform, it takes into account the
physical link latency and efficiency characteristics, physical link utilization and traffic
distribution to provide maximum bandwidth.

One limitation of the VC steering logic is that it does not factor the cache locality in
the steering decision. The VC steering decision is made before the cache lookup. This
means a request can get steered to VH0 or VH1 even though the cache line is in the
FPGA cache. Such a request may incur an additional latency penalty, because the
processor may have to snoop the FPGA cache in order to complete the request. If the
AFU knows about the locality of accesses, then it may be beneficial to use VL0 virtual
channel to exploit the cache locality.

Related Information

Avalon® Interface Specifications

1.3. CCI-P Interface

CCI-P implements to memory address spaces:

• Main memory

• Memory Mapped I/O (MMIO)

Table 7. CCI-P Memory Access Types

Memory Type Description

Main Memory Main memory is the memory attached to the processor and
exposed to the operating system. Requests from the AFU to
main memory are called upstream requests. Subsequent to
this section, main memory is just referred to as memory.

Memory Mapped I/O I/O memory is implemented as CCI-P requests from the
host to the AFU. MMIO is typically used as AFU control
registers. How this memory is implemented and organized
is up to the AFU developer. The AFU may choose logic,
M20Ks or MLABs.
The CCI-P interface defines a request format to access I/O
memory using memory mapped I/O (MMIO) requests.
Requests from the processor to I/O memory are called
downstream requests.
The AFU's MMIO address space is 256 kB in size.

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

15

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6. CCI-P Signals
This figure shows all CCI-P signals grouped into three Tx channels, two Rx channels and some additional
control signals.

c0_RspMemHdr
c0_ReqMmioHdr

c1_RspMemHdr

c1_ReqMemHdr

c0_ReqMemHdr

c2_RspMmioHdr

Accelerated
Functional

Unit
AFU

RX

TX

C0
C1

C0
C1

C2

vc_used/2
hit_miss/1

mdata/16
resp_type/4

rspValid/1

pClk
pClkDiv2
pClkDiv4
uClk_usr

uClk_usrDiv2
pck_cp2af_softReset
pck_cp2af_pwrState

pck_cp2af_error

cl_num/2
format/1

rspValid/1
mmioRdValid/1
mmioWrValid/1

data/512

vc_used/2

mdata/16
resp_type/4

cl_num/2
hit_miss/1

vc_sel/2

mdata/16

c0TxAlmFull/1

vc_sel/2
sop/1
cl_len/2
req_type/4

c1TxAlmFull/1

data/512
valid/1

tid/9

data/64
mmioRdValid/1

mdata/16
address/42

valid/1

address/42
req_type/4
cl_len/2

address /16

tid/9
rsvd

length /2

Table 8. CCI-P signals

Signal Type Description

Tx/Rx The flow direction is from the AFU point of view. Tx flows
from AFU to FIU. Rx flows from FIU to AFU.

Channels Grouping of signals that together completely defines the
request or response.

1.3.1. Signaling Information

• All CCI-P signals must be synchronous to pClk.

• Intel recommends using the CCI-P structures defined inside ccip_if_pkg.sv
file. This file can be found in the RTL package.

• All AFU input and output signals must be registered.

• AFU output bits marked as RSVD are reserved and must be driven to 0.

• AFU output bits marked as RSVD-DNC, are don’t care bits. The AFU can drive
either 0 or 1.

• AFU input bits marked as RSVD must be treated as don’t care (X) by the AFU.

• All signals are active high, unless explicitly mentioned. Active low signals use a
suffix _n.

The figure below shows the port map for the ccip_std_afu module. The AFU must
be instantiated under here. The subsequent sections explain the interface signals.

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7. ccip_std_afu Port Map

1.3.2. Read and Write to Main Memory

CCI-P defines upstream memory read and write requests for accessing the processor
main memory using physical addresses. In a non-virtualized system, the AFU is
expected to drive a host physical address. When in a virtualized system, the AFU is
expected to drive a guest physical address. The addressing mode is transparent to the
AFU hardware developer. The software application developer must ensure that
software provides a physical address to the AFU.

CCI-P specification defines a weak memory consistency model for upstream memory
requests.

For more information, refer to the "Ordering Rules" section.

Related Information

Ordering Rules on page 39

1.3.2.1. Reading from Main Memory

The AFU sends a memory read request over CCI-P Channel 0 (C0), using
pck_af2cp_sTx.c0; and receives the response over C0, using pck_cp2af_sRx.c0.

The c0_ReqMemHdr structure provides a convenient mapping from a flat bit-vector to
read request fields. The AFU asserts the pck_af2cp_sTx.c0.valid signal and
drives the memory read request on hdr. The req_type specifies the cache hint: (i)
RDLINE_I to specify no caching and (ii) RDLINE_S for caching in shared state. The
mdata field is a user-defined request ID that is returned unmodified with the
response.

The c0_RspMemHdr structure provides a convenient mapping from flat bit-vector to
response fields. The FIU asserts the pck_cp2af_sRx.c0.resp_valid signal and
drives the read response and data on hdr and data, respectively. The resp_type is
decoded to identify the response type: Memory Read or UMsg. Since the read
response order is not guaranteed, you must define the mdata field to return the same
value that was transmitted with the request.

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, the AFUs may use mdata for routing the request and response internal
to the AFU; or carrying information on the next triggered action.

1.3.2.2. Writing to Main Memory

The AFU sends memory write requests over CCI-P Channel 1 (C1), using
pck_af2cp_sTx.c1; and receives write completion acknowledgement responses
over C1, using pck_cp2af_sRx.c1.

The c1_ReqMemHdr structure provides a convenient mapping from flat bit-vector to
write request fields. The AFU asserts pck_af2cp_sTx.c1.valid signal and drives
the memory write request and data on hdr and data, respectively. The req_type
signal specifies the request type and caching hint:

• WrLine_I to specify no FPGA caching intent

• WrLine_M to specify intent to leave FPGA cache in M state

• WrPush_I for intent to cache in processor-side cache

The c1_ReqMemHdr structure also provides a mode field
pck_af2cp_sTx.c1.hdr.mode that specifies which type of memory write request to
issue. The two memory write request modes are as follows:

• eMOD_CL to specify a single or multi cache-aligned write

• eMOD_BYTE to specify a byte enable write

Note: This memory request mode is not available for Intel PAC with Intel Arria®

10 GX FPGA.

The c1_RspMemHdr structure provides a convenient mapping from flat bit-vector to
response fields. FIU asserts pck_cp2af_sRx.c1.resp_valid signal and drives the
read response on hdr. The resp_type field is decoded to decode the response type:
Memory write, Write Fence or Interrupt.

A WrFence is used to make the memory write requests globally visible. WrFence
request follows the same flow as memory write requests, except that it does not
accept a data payload and address.

For more information, refer to the Write Request header format in the Tx Header
Format.

Related Information

Tx Header Format on page 23

1.3.3. Interrupts

Interrupts are not supported in the Integrated FPGA Platform.

The AFU sends an interrupt over Tx channel C1, using an interrupt ID, and receives
the response over Rx channel C1.

An AFU should only have one interrupt ID issued at any given time. If the AFU does
not wait for the response to return for the interrupt ID issued and issues another
interrupt with the same ID, the host may not observe the arrival of the second
interrupt. It is recommended for an interrupt request be serviced by software before
the AFU issues an interrupt using the same interrupt ID.

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.4. UMsg

Attention: UMsg is only supported in the Integrated FPGA Platform.

UMsg provides the same functionality as a spin loop from the AFU, without burning the
CCI-P read bandwidth. Think of it as a spin loop optimization, where a monitoring
agent inside the FPGA cache controller is monitoring snoops to cache lines allocated by
the driver. When it sees a snoop to the cache line, it reads the data back and sends an
UMsg to the AFU.

UMsg flow makes use of the cache coherency protocol to implement a high speed
unordered messaging path from CPU to AFU. This process consists of two stages as
shown in Figure 8 on page 19.

The first stage is initialization, this is where SW pins the UMsg Address Space (UMAS)
and shares the UMAS start address with the FPGA cache controller. Once this is done,
the FPGA cache controller reads each cache line in the UMAS and puts it as shared
state in the FPGA cache.

The second stage is actual usage, where the CPU writes to the UMAS. A CPU write to
UMAS generates a snoop to FPGA cache. The FPGA responds to the snoop and marks
the line as invalid. The CPU write request completes, and the data become globally
visible. A snoop in UMAS address range, triggers the Monitoring Agent (MA), which in
turn sends out a read request to CPU for the Cache Line (CL) and optionally sends out
an UMsg with Hint (UMsgH) to the AFU. When the read request completes, an UMsg
with 64B data is sent to the AFU.

Figure 8. UMsg Initialization and Usage Flow

UMsgHCPU Wr causes a Snoop to FPGA

Caching device gets
ownership of UMAS

Setup UMAS
(Pinned Memory)

CPU Writes to UMAS

CPU

In
iti

ali
za

tio
n

Us
ag

e

Memory FPGA QPI Agent AFU

FPGA MA reads the CL

FPGA gets the read data

For ultra low latency,
Snp itself is used as
a UMsgH

Snp + Read Data is
sent as UMsgHUMsg + 64B Data

Inform FPGA of UMAS location

Functionally, UMsg is equivalent to a spin loop or a monitor and mwait instruction on
an Intel Xeon processor.

Key characteristics of UMsgs:

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Just as spin loops to different addresses in a multi-threaded application have no
relative ordering guarantee, UMsgs to different addresses have no ordering
guarantee between them.

• Every CPU write to a UMAS CL, may not result in a corresponding UMsg. The AFU
may miss an intermediate change in the value of a CL, but it is guaranteed to see
the newest data in the CL. Again it helps to think of this like a spin loop: if the
producer thread updates the flag CL multiple times, it is possible that polling
thread misses an intermediate change in value, but it is guaranteed to see the
newest value.

Below is an example usage. Software updates to a descriptor queue pointer that may
be mapped to an UMsg. The pointer is always expected to increment. The UMsg
guarantees that the AFU sees the final value of the pointer, but it may miss
intermediate updates to the pointer, which is acceptable.

1. The UMsg uses the FPGA cache, as a result it can cause cache pollution, a
situation in which a program unnecessarily loads data into the cache and causes
other needed data to be evicted, thus degrading performance.

2. Because the CPU may exhibit false snooping, UMsgH should be treated as a hint.
That is, you can start a speculative execution or pre-fetch based on UMsgH, but
you should wait for UMsg before committing the results.

3. The UMsg provides the same latency as an AFU read polling using RdLine_S, but it
saves CCI-P channel bandwidth which can be used for read traffic.

1.3.5. MMIO Accesses to I/O Memory

The CCI-P defines MMIO read and write requests for accessing the AFU register file.
MMIO requests are routed from the CPU to the AFU over a single PCIe channel.

MMIO Reads

The AFU receives an MMIO read request over pck_cp2af_sRx.c0. The CCI-P asserts
mmioRdValid and drives the MMIO read request on hdr. The c0_ReqMmioHdr
structure provides a convenient mapping from a flat bit-vector to MMIO request fields
– {address, length, tid}.

The AFU drives an MMIO read response over pck_af2cp_sTx.c2. The AFU asserts
mmioRdValid and drives the response header and data on hdr and data,
respectively. The AFU is expected to return the request tid with the corresponding
response it used to associate the response with request.

The following list describes key attributes of a CCI-P MMIO read request:

• Data lengths supported are 4 bytes and 8 bytes

• Response length must match the request length. For example, it is illegal to return
two 4-byte responses to an 8-byte MMIO read request

• Maximum number of outstanding MMIO read requests is limited to 64

• MMIO reads to undefined AFU registers should still return a response

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

MMIO Writes

The AFU receives an MMIO write request over pck_cp2af_sRx.c0. The CCI-P asserts
mmioWrValid and drives the MMIO write request header and data on hdr and data,
respectively. The c0_ReqMmioHdr structure provides a convenient mapping from a
flat bit-vector to MMIO request fields – {address, length, tid}. The MMIO write
request is posted and no response is expected from the AFU.

The data lengths supported are 4 bytes, 8 bytes, and 64 bytes.

Note: Not supported on all Intel Xeon platforms.

Implementation Note for all MMIO Accesses

The following is a list of important considerations when designing an AFU MMIO
register file:

• It is mandatory for the AFU to support 8-byte accesses in order to implement the
DFH.

• Support for 4-byte MMIO accesses is optional. The AFU developer can coordinate
with the software application developer to avoid 4-byte accesses.

• The AFU can accept MMIO requests as they arrive, consecutively, without any
delays.

• Unaligned MMIO accesses results in an error. The software application developer
must ensure that the MMIO address is aligned to the request length. For example:
8-byte MMIO request byte address should be a multiple of 8, which means byte
address[2:0] should be 0.

1.3.6. CCI-P Tx Signals

Figure 9. Tx Interface Structure Inside ccip_if_pkg.sv

There are three Tx channels:

The C0 and C1 Tx channels are used for memory requests. Both C0 and C1 Tx
channels have independent flow control. The C0 Tx channel is used for memory read
requests; the C1 Tx channel is used for memory write requests.

The C2 Tx channel is used to return MMIO Read response to the FIU. The CCI-P port
guarantees to accept responses on C2; therefore, it has no flow control.

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10. Tx Channel Structure Inside ccip_if_pkg.sv

Each Tx channel has a valid signal to qualify the corresponding header and data
signals within the structure.

The following tables describe the signals that make up the CCI-P Tx interface.

Table 9. Tx Channel Description for Channel 0

Signal Width (bits) Direction Description

pck_af2cp_sTx.c0.hdr 74 Output Channel 0 request header. Refer to Table 18
on page 26.

pck_af2cp_sTx.c0.valid 1 Output When set to 1, it indicates channel 0 request
header is valid.

pck_cp2af_sRx.c0TxAlmFull 1 Input When set to 1, Tx Channel 0 is almost full.
After this signal is set, AFU is allowed to
send a maximum of 8 requests.
When set to 0, AFU can start sending
requests immediately.

Table 10. Tx Channel Description for Channel 1

Signal Width Direction Description

pck_af2cp_sTx.c1.hdr 80 Output Channel 1 request header. Refer to Table 12
on page 23.

pck_af2cp_sTx.c1.data 512 Output Channel 1 data

pck_af2cp_sTx.c1.valid 1 Output When set to 1, it indicates channel 1 request
header and data is valid.

pck_cp2af_sRx.c1TxAlmFull 1 Input When set to 1, Tx Channel 1 is almost full.
After this signal is set, AFU is allowed to
send a maximum of 8 requests or data.
When set to 0, AFU can start sending
requests immediately.

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 11. Tx Channel Description for Channel 2

Signal Width (bits) Direction Description

pck_af2cp_sTx.c2.hdr 9 Output Channel 2 response header. Refer to Table
12 on page 23.

pck_af2cp_sTx.c2.mmioRdValid 1 Output When set to 1, indicates Channel 2 response
header and data is valid.

pck_af2cp_sTx.c2.data 64 Output Channel 2 data. MMIO Read Data that AFU
returns to FIU.
For 4 bytes reads, data must be driven on
bits [31:0].
For 8 bytes reads, AFU must drive one 8
bytes data response. Response cannot be
split into two 4 bytes responses.

1.3.7. Tx Header Format

Table 12. Tx Header Field Definitions

Field Description

mode Memory Access Mode
• eMOD_CL (1'b0)—cache aligned write. Enables 1, 2, or 4 cache line writes to host

memory, specified by cl_len.
• eMOD_BYTE(1'b1)—byte aligned write. Write a contiguous subset of a line to host

memory, as specified by the byte_start and byte_len fields. Note: This
memory request mode is not available for Intel PAC with Intel Arria 10 GX FPGA.
Note: When set to eMOD_BYTE, the cache length (cl_len) must be set to 0,

indicating a single cache line write.
When set to eMOD_CL, byte_len and byte_start must be set to 0.

Note: You cannot change modes in the middle of a multi cache line write.
Note: This field is RSVD0 for Intel FPGA PAC N3000 and Intel PAC with Intel Arria 10

GX FPGA

byte_start Byte Start Index for Byte Access Mode
• Indicates index of first byte in the 512-bit TX Data bus to write to host memory.
• When mode = eMOD_CL, byte_start must be set to 0.
• When mode = eMOD_BYTE, byte_start is set in byte_enable mode and the

legal range is 0 - 63.
Note: This field is RSVD0 for Intel FPGA PAC N3000 and Intel PAC with Intel Arria 10

GX FPGA

byte_len Byte Length for Byte Access Mode (mode = eMOD_BYTE)
• Indicates how many bytes to write to host memory.
• byte_len—specifies the number of bytes to the left (most significant) of the

byte_start index to include a memory request in Byte Access Mode.
• When mode = eMOD_CL, byte_len must be set to 0.
• When mode = eMOD_BYTE, byte_len is set in byte enable mode and the legal

range is 1 - 63.
Note: This field is RSVD0 for Intel FPGA PAC N3000 and Intel PAC with Intel Arria 10

GX FPGA

mdata Metadata: user defined request ID that is returned unmodified from request to
response header.
For multi-CL writes on C1 Tx, mdata is only valid for the header when sop=1.

tid Transaction ID: AFU must return the tid MMIO Read request to response header. It is
used to match the response against the request.

continued...

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Field Description

vc_sel Virtual Channel selected
• 2’h0 – VA
• 2’h1 – VL0
• 2’h2 – VH0
• 2’h3 – VH1
All CLs that form a multi-CL write request are routed over the same virtual channel.

req_type Request types listed in Table 13 on page 24.

sop Start of Packet for multi-CL memory write
• 1’h1 – marks the first header. Must write in increasing address order.
• 1’h0 – subsequent headers

cl_len Length for memory requests
• 2’h0 – 64 bytes (1 CL)
• 2’h1 – 128 bytes (2 CLs)
• 2’h3 – 256 bytes (4 CLs)
Note: When mode = eMOD_BYTE, cl_len must be 2’h0.

address 64-byte aligned Physical Address, that is, byte_address>>6
The address must be naturally aligned with regards to the cl_len field. For example
for cl_len=2’b01, address[0] must be 1'b0, similarity for cl_len=2'b11,
address[1:0] must be 2'b00.

Table 13. AFU Tx Request Encodings and Channels Mapping

Request Type Encoding Data Payload Description Header Format

t_if_ccip_c0_tx: enum t_ccip_c0_req

eREQ_RDLINE_I 4’h0 No Memory read request with no
intention to cache.

C0 Memory Request Header.
Refer to Table 14 on page 25.

eREQ_RDLINE_S 4’h1 No Memory read request with
caching hint set to Shared.

t_if_ccip_c1_tx: enum t_ccip_c1_req

eREQ_WRLINE_I 4’h0 Yes Memory write request with no
intention of keeping the data
in FPGA cache.
Does not keep the cache line
in the FPGA cache and does
not provide guidance on the
CPU-side caching.
Note: The CPU is responsible

for the CPU-side
caching.

C1 Memory Request Hdr. Refer
to Table 15 on page 25.

eREQ_WRLINE_M 4’h1 Yes Memory write request with
caching hint set to Modified.

eREQ_WRPUSH_I 4’h2 Yes Memory Write Request, with
caching hint set to Invalid. FIU
writes the data into the
processor’s last level cache
(LLC) with no intention of
keeping the data in FPGA
cache. The LLC it writes to is
always the LLC associated with
the processor where the
SDRAM address is homed.

continued...

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Request Type Encoding Data Payload Description Header Format

Does not keep the cache line
in the FPGA cache, but pushes
the line into the CPU LLC.

eREQ_WRFENCE 4’h4 No Memory write fence request. Fence Hdr. Refer to Table 16
on page 26.

eREQ_INTR 4'h6 No Interrupt Interrupt Hdr. Refer to Table
17 on page 26

t_if_ccip_c2_tx – does not have a request type field

MMIO Rd NA Yes MMIO read response MMIO Rd Response Hdr
Refer to Table 18 on page 26.

All unused encodings are considered RSVD0.

Table 14. C0 Read Memory Request Header Format Structure; t_ccip_c0_ReqMemHdr

Bit Number of Bits Field

[73:72] 2 vc_sel

[71:70] 2 RSVD

[69:68] 2 cl_len

[67:64] 4 req_type

[63:58] 6 RSVD

[57:16] 42 address

[15:0] 16 mdata

To determine if byte enable is available on your platform, you must use Verilog to
verify CCIP_ENCODING_HAS_BYTE_WR is defined and the parameter
ccip_cfg_pkg::BYTE_EN_SUPPORTED is non-zero. These two conditions must be
true in order for byte enable to be available.

Note: When CCIP_ENCODING_HAS_BYTE_WR is defined, byte_start and byte_len are
available. This does not mean that byte enable is available on your platform.

Table 15. C1 Write Memory Request Header Format Structure: t_ccip_c1_ReqMemHdr

Bit Number of Bits Field SOP=1 Field SOP=0

[79:74] 6 byte_len (must be 0 when
mode=eMOD_CL)

Note: This field is RSVD0 for Intel
FPGA PAC N3000 and Intel
PAC with Intel Arria 10 GX

FPGA

byte_len (must be 0 when
sop=0)

Note: This field is RSVD0 for Intel
FPGA PAC N3000 and Intel
PAC with Intel Arria 10 GX

FPGA

[73:72] 2 vc_sel RSVD-DNC

[71] 1 sop=1 sop=0

[70] 1 mode mode (must be eMOD_CL when
sop=0)

continued...

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Number of Bits Field SOP=1 Field SOP=0

Note: This field is RSVD0 for Intel
FPGA PAC N3000 and Intel
PAC with Intel Arria 10 GX

FPGA

Note: This field is RSVD0 for Intel
FPGA PAC N3000 and Intel
PAC with Intel Arria 10 GX

FPGA

[69:68] 2 cl_len RSVD-DNC

[67:64] 4 req_type req_type

[63:58] 6 byte_start (must be 0 when
mode=eMOD_CL)

Note: This field is RSVD0 for Intel
FPGA PAC N3000 and Intel
PAC with Intel Arria 10 GX

FPGA

byte_start (must be 0 when
sop=0)

Note: This field is RSVD0 for Intel
FPGA PAC N3000 and Intel
PAC with Intel Arria 10 GX

FPGA

[57:18] 40 address[41:0] RSVD-DNC

[17:16] 2 address[1:0]

[15:0] 16 mdata RSVD-DNC

Table 16. C1 Fence Header Format Structure: t_ccip_c1_ReqFenceHdr

Bit Number of Bits Field

[79:74] 6 RSVD

[73:72] 2 vc_sel

[71:68] 4 RSVD

[67:64] 4 req_type

[63:16] 48 RSVD

[15:0] 16 mdata

Table 17. C1 Interrupt Header Format Structure: t_ccip_c1_ReqIntrHdr (Intel FPGA
PAC only)

Bit Number of Bits Field

[79:74] 6 RSVD

[73:72] 2 vc_sel

[71:68] 4 RSVD

[67:64] 4 req_type

[63:12] 62 RSVD

[1:0] 2 id

Table 18. C2 MMIO Response Header Format

Bit Number of Bits Field

[8:0] 9 tid

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.8. CCI-P Rx Signals

Figure 11. Rx Interface Structure Inside ccip_if_pkg.sv

There are two Rx channels:

• Channel 0 interleaves memory responses, MMIO requests and UMsgs.

• Channel 1 returns responses for AFU requests initiated on Tx Channel 1.

The c0TxAlmFull and c1TxAlmFull signals are inputs to the AFU. Although they
are declared with the Rx signals structure, they logically belong to the Tx interface and
so were described in the previous section.

Rx Channels have no flow control. The AFU must accept responses for memory
requests it generated. The AFU must pre-allocate buffers before generating a memory
request. The AFU must also accept MMIO requests.

Rx Channel 0 has separate valid signals for memory responses and MMIO requests.
Only one of those valid signals can be set in a cycle. The MMIO request has a separate
valid signal for MMIO Read and MMIO Write. When either mmioRdValid or
mmioWrValid is set, the message is an MMIO request and should be processed by
casting t_if_ccip_c0_Rx.hdr to t_ccip_c0_ReqMmioHdr.

Table 19. Rx Channel Signal Description for Channel 0

Signal Width (bits) Direction Description

pck_cp2af_sRx.c0.hdr 28 Input Channel 0 response header or MMIO request header.
Refer to Table 21 on page 28.

pck_cp2af_sRx.c0.data 512 Input Channel 0 Data bus Memory Read Response and UMsg:
• Returns 64 bytes data
MMIO Write Request:
• For 4 bytes write, data driven on bits [31:0]
• For 8 bytes write, data driven on bits [63:0]

pck_cp2af_sRx.c0.rspVa
lid

1 Input When set to 1, it indicates header and data on Channel 0
are valid. The header must be interpreted as a memory
response, decode resp_type field.

pck_cp2af_sRx.c0.mmioR
dValid

1 Input When set to 1, it indicates a MMIO Read request Channel 0.

pck_cp2af_sRx.c0.mmioW
rValid

1 Input When set to 1, it indicates a MMIO Write request on
Channel 0.

Table 20. Rx Channel Signal Description for Channel 1

Signal Width (bits) Direction Description

pck_cp2af_sRx.c1.hdr 28 Input Channel 1 response header. Refer to Table
21 on page 28

pck_cp2af_sRx.c1.rspVali
d

1 Input When set to 1, it indicates header on
channel 1 is a valid response.

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.8.1. Rx Header and Rx Data Format

Table 21. Rx Header Field Definitions

Field Description

mdata Metadata: User defined request ID, returned unmodified from memory request to
response header.
For multi-CL memory response, the same mdata is returned for each CL.

vc_used Virtual channel used: when using VA, this field identifies the virtual channel selected
for the request by FIU. For other VCs it returns the request VC.

format When using multi-CL memory write requests, FIU may return a single response for the
entire payload or a response per CL in the payload.
• 1’b0: Unpacked write response – Returns a response per CL. Look up the cl_num

field to identify the cache line.
• 1’b1: Packed write response – Returns a single response for the entire payload. The

cl_num field gives the payload size that is: 1 CL, 2 CLs, or 4 CLs.
Note: Write responses from the Memory Properties Factory (MPF) Intel FPGA Basic

Building Blocks is always packed when sent to the AFU

cl_num Format=0:
For a response with >1 CL data payload, this field identifies the cl_num.
2’h0 – First CL. Lowest Address
2’h1 – Second CL
2'h2 – Third CL
2’h3 – Fourth CL. Highest Address
Note: Responses may be returned out of order.

Format=1:
This field identifies the data payload size.
2’h0 – 1 CL or 64 bytes
2’h1 – 2 CL or 128 bytes
2’h3 – 4 CL or 256 bytes

hit_miss Cache Hit/Miss status. AFU can use this to generate fine grained hit/miss statistics for
various modules.
1’b0 – Cache Miss
1’b1 – Cache Hit

MMIO Length Length for MMIO requests:
2’h0 – 4 bytes
2’h1 – 8 bytes
2'h2 - 64 bytes (for MMIO Writes only)

MMIO Address Double word (DWORD) aligned MMIO address offset, that is, byte address>>2.

UMsg ID Identifies the CL corresponding to the UMsg

UMsg Type Two type of UMsg are supported:
1’b1 – UMsgH (Hint) without data
1’b0 – UMsg with Data

Table 22. AFU Rx Response Encodings and Channels Mapping

Request Type Encoding Data Payload Hdr Format

t_if_ccip_c0_Rx: enum t_ccip_c0_rsp

eRSP_RDLINE 4’h0 Yes Memory Response Header. Refer to Table 23 on
page 29.
Qualified with c0.rspValid

continued...

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Request Type Encoding Data Payload Hdr Format

MMIO Read NA No MMIO Request Header. Refer to Table 24 on
page 29

MMIO Write NA Yes NA

eRSP_UMSG 4’h4 Yes/No UMsg Response Header. Refer to Table 26 on
page 30. Qualified with c0.rspValid

t_if_ccip_c1_Rx: enum t_ccip_c1_rsp

eRSP_WRLINE 4’h0 No Memory Response Header. Refer to Table 25 on
page 29.
Qualified with c1.rspValid

eRSP_WRFENCE 4'h4 No Wr Fence Response Header. Refer to Table 27
on page 30.

eRSP_INTR 4'h6 No Interrupt Response Header. Refer to Table 28
on page 30

Table 23. C0 Memory Read Response Header Format Structure: t_ccip_c0_RspMemHdr

Bit Number of Bits Field

[27:26] 2 vc_used

[25] 1 RSVD

[24] 1 hit_miss

[23:22] 2 RSVD

[21:20] 2 cl_num

[19:16] 4 resp_type

[15:0] 16 mdata

Table 24. MMIO Request Header Format

Bit Number of Bits Field

[27:12] 16 address

[11:10] 2 length

[9] 1 RSVD

[8:0] 9 TID

Table 25. C1 Memory Write Response Header Format Structure: t_ccip_c1_RspMemHdr

Bit Number of Bits Field

[27:26] 2 vc_used

[25] 1 RSVD

[24] 1 hit_miss

[23] 1 format

[22] 1 RSVD

continued...

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Number of Bits Field

[21:20] 2 cl_num

[19:16] 4 resp_type

[15:0] 16 mdata

Table 26. UMsg Header Format (Integrated FPGA Platform only)

Bit Number of Bits Field

[27:20] 8 RSVD

[19:16] 4 resp_type

[15] 1 UMsg Type

[14:3] 12 RSVD

[2:0] 3 UMsg ID

Table 27. WrFence Header Format Structure: t_ccip_c1_RspFenceHdr

Bit Number of Bits Field

[27:20] 8 RSVD

[19:16] 4 resp_type

[15:0] 16 mdata

Table 28. Interrupt Header Format Structure: t_ccip_c1_RspIntrHdr (Intel FPGA PAC
only)

Bit Number of Bits Field

[27:26] 2 vc_used

[25:20] 6 RSVD

[19:16] 4 resp_type

[15:2] 14 RSVD

[1:0] 2 id

1.3.9. Multi-Cache Line Memory Requests

To achieve highest link efficiency, pack the memory requests into large transfer sizes.
Use the multi-CL requests for this. Listed below are the characteristics of multi-CL
memory requests:

• Highest memory bandwidth is achieved when using a data payload of 4 CLs.

• Memory write request should always begin with the lowest address first. SOP=1 in
the c1_ReqMemHdr marks the first CL. All subsequent headers in the multi-CL
request must drive incremental values in Address[1:0]and Address[41:2] is
treated as don't care.

• An N CL memory write request takes N cycles on Channel 1. It is legal to have idle
cycles in the middle of a multi-CL request, but one request cannot be interleaved
with another request. It is illegal to start a new request without completing the
entire data payload for a multi-CL write request.

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• FIU guarantees to complete the multi-CL VA requests on a single VC.

• The memory request address must be naturally aligned. A 2CL request should
start on a 2-CL boundary and its CL address must be divisible by 2, that is
address[0] = 1'b0. A 4CL request should be aligned on a 4-CL boundary and its CL
address must be divisible by 4, that is address[1:0] = 2'b00.

• A multi-CL burst must complete by transmitting all words before issuing any other
request. This means that the following special memory write requests cannot be
interleaved within a single multi-CL burst:

— Write Fences

— Interrupts

— Byte enable writes

The figure below is an example of a multi-CL Memory Write Request.

Figure 12. Multi-CL Memory Request

pClk

‘h 1

‘h 3

‘h 0

‘h 10 ‘h 11 ‘h 12 ‘h 13

‘h 1 ‘h 2 ‘h 3 ‘h 0 ‘h 1 ‘h 1 ‘h 0 ‘h 1

WrLine_IWrLine_MWrLine_I WrLine_I

‘h 0 ‘h 0 ‘h 0 ‘h 1

‘h 1 ‘h 0 ‘h 1

‘h 10 44‘h 10 43‘h 10 41‘h 10 40

‘h 0 ‘h 1 ‘h 1 ‘h 0

pck_af2cp_sTx.c1.valid

pck_af2cp_sTx.c1.data

pck_af2cp_sTx.c1.hdr.vc_sel

pck_af2cp_sTx.c1.hdr.sop

pck_af2cp_sTx.c1.hdr.cl_len

pck_af2cp_sTx.c1.hdr.addr [41:2]

pck_af2cp_sTx.c1.hdr.addr [1:0]

pck_af2cp_sTx.c1.hdr.req_type

pck_af2cp_sTx.c1.hdr.mdata

D0

VA VH 0 VL 0 VH 1

D1 D2 D3 D4 D5 D6 D7 D8

The figure below is an example for a Memory Write Response Cycles. For unpacked
response, the individual CLs could return out of order.

Figure 13. Multi-CL Memory Write Responses

pClk

pck_cp2af_sRx.c1.valid

pck_cp2af_sRx.c1.hdr.mdata

pck_cp2af_sRx.c1.hdr.vc_used

pck_cp2af_sRx.c1.hdr.hit_miss

pck_cp2af_sRx.c1.hdr.cl_num

pck_cp2af_sRx.c1.hdr.format

pck_cp2af_sRx.c1.hdr.resp_type

‘h10 ‘h11 ‘h12 ‘h11 ‘h10 ‘h10 ‘h13 ‘h10

VL0 VH0 VL0 VH0 VL0 VL0 VH1 VL0

‘h0 ‘h0 ‘h0 ‘h0 ‘h0 ‘h0 ‘h1 ‘h0

‘h1 ‘h0 ‘h0 ‘h0 ‘h1 ‘h0 ‘h0 ‘h1

‘h1 ‘h0 ‘h0 ‘h1 ‘h0 ‘h2 ‘h1 ‘h3

WrLine

Below is an example of a Memory Read Response Cycle. The read response can be
reordered within itself; that is, there is no guaranteed ordering between individual CLs
of a multi-CL Read. All CLs within a multi-CL response have the same mdata and same
vc_used. Individual CLs of a multi-CL Read are identified using the cl_num field.

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 14. Multi-CL Memory Read Responses

pClk

pck_cp2af_sRx.c0.valid

pck_cp2af_sRx.c0.hdr.mdata

pck_cp2af_sRx.c0.hdr.vc_used

pck_cp2af_sRx.c0.hdr.hit_miss

pck_cp2af_sRx.c0.hdr.cl_num

pck_cp2af_sRx.c0.hdr.resp_type

‘h10 ‘h11 ‘h12 ‘h11 ‘h10 ‘h10 ‘h13 ‘h10

VL0 VH0 VL0 VH0 VL0 VL0 VH1 VL0

‘h1 ‘h0 ‘h0 ‘h0 ‘h1 ‘h0 ‘h0 ‘h1

‘h1 ‘h0 ‘h0 ‘h1 ‘h0 ‘h2 ‘h1 ‘h3

RdLine

1.3.10. Byte Enable Memory Request (Intel FPGA PAC D5005)

To achieve fine control of write data so that only specific bytes of data are written to
host memory, use the byte enable mode. Listed below are the characteristics of byte
enable memory requests:

• Byte enable memory requests use a byte-invariant little endianness scheme. This
means that:

— For any single or multi-byte element in a data structure, the element uses the
same contiguous bytes of memory, specified by the byte_start and
byte_len header fields.

— Write data is positioned in the data field at the offset where it is stored within
the cache line. The first data bit written is bit byte_start*8.

• byte_start specifies the byte index, where the least significant byte is 0
(pck_af2cp_sTx.c1.data[7:0]), and the most significant byte is 63
(pck_af2cp_sTx.c1.data[511:504])

• byte_len specifies the number of bytes to be included in a byte-enabled memory
write transaction. The byte length extends the write data towards the most
significant byte.

• Byte enable memory requests must operate with cache length (cl_len) set to 0
(a 1 CL memory write request).

• The length cannot extend past byte 63 of pck_af2cp_sTx.c1.data. The
maximum allowable byte length can be represented by the following equations:

— If byte_start is 0:

• MAX_BYTE_LEN = 63

— If byte_start is not 0:

• MAX_BYTE_LEN = 64 – byte_start

The following table is an example of how the channel 1 request header
(pck_af2cp_sTx.c1.hdr) indexes bytes in byte enable mode. In this example, the
AFU designer is writing bytes [20:4] (pck_af2cp_sTx.c1.data[167:32]) of the
data word 0xAAAABBBBCCCCDDDDE to bytes [20:4] of the host memory at address
0xFFF00.

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Index Width (bits) Field Value

Header 79:74 6 byte_len 0x11

73:72 2 vc_sel eVC_VA (0x0)

71 1 sop=1 1

70 1 (CL/byte) 0:CL, 1:byte 1

69:68 2 cl_len 0

67:64 4 req_type eREQ_WRLINE_I
(0x0)

63:58 6 byte_start 0x4

57:18 40 address 0xFFF00

17:16 2 — 0x0

15:0 16 mdata 0x0

Data — 512 Data 0xAAAABBBBCCCCDD
DDE

Figure 15. Host memory at address 0xFFF00.
This figure shows the value in host memory before and after a write.

0x FEDC BA98 7654 3210 FEDC BA98 7654 3210
 FEDC BA98 7654 3210 FEDC BA98 7654 3210
 FEDC BA98 7654 3210 FEDC BA00 0000 0000
 0000 0000 0000 000A AAAB BBBC7654 3210

0x0

0xFFF0000

1.3.10.1. Mixing Byte Enable and Full Cache Line Accesses

In some applications, it is necessary for an AFU to access buffers that either start
unaligned to 64-byte boundaries or end before the next 64-byte boundary in host
memory. An AFU can use a mix of byte enable transactions and full cache line
accesses to perform buffer writes that start or end on any boundary. For such a
transfer the AFU must not mix byte enable bursts (mode=eMOD_BYTE) with full cache
line bursts (mode=eMOD_CL).

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In the following example, the AFU writes 152 bytes of an incrementing pattern
starting at byte address 0x62EC. Since the first and last byte address being accessed
do not line up to 64-byte boundaries, the transfer is broken up into three sections with
the start and end sections utilizing byte enables to update a subset of bytes within a
64-byte aligned region of memory. The first section writes 20 bytes to memory, then
128 bytes are written using a full cache line burst, followed by a final write of 4 bytes.

Figure 16. Memory Accessed and Corresponding CCIP Address

 Locations Written

0x62C0 0x6300 0x6340 0x6380 0x63C0Byte Address

CCIP Address[41:2]

CCIP Address[1:0] 0x3 0x0 0x1 0x2

0x62 0x63 0x63 0x63

0x3

0x63

128 bytes 4 bytes20 bytes

Since the first access does not start on a 64-byte boundary, the mode is set to
eMOD_BYTE. The byte_start field is 0x2C, the byte_len field is 0x14, and the
CCIP address bits 41:2 set to 0x62 and CCIP address bits 1:0 set to 0x3.

Since the second access is aligned to a 2CL boundary the next 128 bytes can be
posted as a two beat burst with mode set to eMOD_CL. This access cannot be
combined with beats that set mode to eMOD_BYTE because the two modes cannot be
interleaved in the same burst.

The third access starts on a 64-byte boundary but only accesses four bytes of memory
so the mode is set to eMOD_BYTE. The byte_start field is 0x0, the byte_len field
is 0x4, and the CCIP address bits 41:2 set to 0x63 and bits 1:0 set to 0x2.

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17. Mixed Byte Enable and Full Cache Line Access Timing Diagram

Notes:
1. 20-byte access posted at starting byte address 0x62EC using byte enables (mode = eMOD_BYTE)
2. 128-byte access posted at starting byte address 0x6300 as a 2CL burst (mode = eMOD_CL)
3. 4-byte access posted at starting byte address 0x6380 using byte enables (mode = eMOD_BYTE)

pClk

pck_af2cp_sTx.c1.valid

pck_af2cp_sTx.c1.ready

pck_af2cp_sTx.c1.hdr.sop

pck_af2cp_sTx.c1.hdr.cl_len

pck_af2cp_sTx.c1.hdr.addr [41:2]

pck_af2cp_sTx.c1.hdr.addr [1:0]

pck_af2cp_sTx.c1.hdr.mdata

pck_af2cp_sTx.c1.hdr.byte_len

pck_af2cp_sTx.c1.hdr.byte_start

pck_af2cp_sTx.c1.hdr.mode

1 2 3

eMOD_BYTE eMOD_CL eMOD_BYTE

6’h2C 6’h00

6’h14 0 6’h04

2’h0 2’h1 2’h0

‘h 62 ‘h 63 ‘h 63

2’h3 2’h0 2’h1 2’h2

‘h 0 ‘h 1 ‘h 2

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18. Host Memory

1.3.11. Additional Control Signals

Unless otherwise mentioned, all signals are active high.

Table 29. Clock and Reset

Signal Width
(bits)

Direction Description

pck_cp2af_softReset 1 Input Synchronous ACTIVE HIGH soft reset.
When set to 1, AFU must reset all logic. The minimum
reset pulse width is 256 pClk cycles. All outstanding
CCI-P requests are flushed before de-asserting soft
reset.
A soft reset does not reset the FIU.

pClk 1 Input Primary interface clock. All CCI-P interface signals are
synchronous to this clock.

pClkDiv2 1 Input Synchronous and in phase with pClk. 0.5x, the pClk
clock frequency.

pClkDiv4 1 Input Synchronous and in phase with pClk. 0.25x, the pClk
clock frequency.

uClk_usr 1 Input The user-defined clock is not synchronous with the pClk.
AFU must synchronize the signals to pClk domain before
driving the CCI-P interface.
The AFU load utility programs the user-defined clock
frequency before de-asserting pck_cp2af_softReset.

uClk_usrDiv2 1 Input Synchronous with uClk_usr and 0.5x the frequency.

continued...

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Width
(bits)

Direction Description

Note: You can set the frequency to a value that is not
synchronous with the uClk_usr.

pck_cp2af_pwrState 2 Input Indicates the current AFU power state request. In
response to this, the AFU must attempt to reduce its
power consumption. If sufficient power reduction is not
achieved, the AFU may be Reset.
2’h0 – AP0 - Normal operation mode
2’h1 – AP1 - Request for 50% power reduction
2’h2 – Reserved
2’h3 – AP2 - Request for 90% power reduction
When pck_cp2af_pwrState is set to AP1, the FIU
starts throttling the memory request path to achieve
50% throughput reduction. The AFU is also expected to
reduce its power utilization to 50%, by throttling back
accesses to FPGA internal memory resources and its
compute engines. Similarly upon transition to AP2, the
FIU throttles the memory request paths to achieve 90%
throughput reduction over normal state, and AFU in turn
is expected to reduce its power utilization to 90%.

pck_cp2af_error 1 Input CCI-P protocol error has been detected and logged in the
PORT Error register. This register is visible to the AFU.
It can be used as a signal tap trigger condition.
When such an error is detected, the CCI-P interface
stops accepting new requests and sets AlmFull to 1.
In the event of a CCI-P protocol error, you should not
expect any outstanding transactions to complete even
though the AFU is still active (not held in reset).

Related Information

Accelerator Functional Unit (AFU) Developer’s Guide for Intel FPGA Programmable
Acceleration Card

1.3.12. Protocol Flow

1.3.12.1. Upstream Requests

Table 30. Protocol Flow for Upstream Request from AFU to FIU
The Tx Data column identifies whether the request expects a Tx Data payload. The Rx Data column identifies
whether the response returns an Rx Data payload.

Type Tx Request Tx Data Rx Response Rx Data

Memory Write WrLine_I Yes WrLine No

WrLine_M

WrPush_I

Memory Read RdLine_I No RdLine Yes

RdLine_S

Special Messages WrFence No WrFence No

Interrupt No Interrupt No

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

37

https://www.intel.com/content/www/us/en/programmable/documentation/bfr1522087299048.html
https://www.intel.com/content/www/us/en/programmable/documentation/bfr1522087299048.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 31. Protocol Flow for Upstream Request from AFU to FIU
• WrLine_I: Requires special handling, because it must first write to the CL and then evict it from the cache.

The eviction forms Phase 2 of the request.

• RdLine_I: Recommended as the default read type.

• RdLine_S: Use sparingly only for cases where you have identified highly referenced CLs.

• RdCode: Updates the CPU directory and lets the FPGA cache the line in Shared state. RdCur does NOT
update the CPU directory, FPGA does not cache this line. A future access to this line from CPU, does not
snoop the FPGA.

CCI-P
Request

FPGA Cache UPI
Cycle

Next
State

CCI-P
Response

UPI
Cycle

Next
State

CCI-P
Respons

e

UPI Cycle Next
State

Hit/Miss State Phase 1 Phase 2 Phase 3

WrLine_I Hit M None M WrLine WbMtoI I

Hit S InvItoE

Miss I

WrLine_M Hit M None M WrLine NA

Hit S InvtoE

Miss I

WrLine_I Miss M WbMotI I InvItoE M WrLine WbMotI I

WrLine_M

WrPush_I WbPushM
otI

I

WrLine_I Miss S EvctCln I InvItoE M WrLine WbMotI I

WrLine_M

WrPush_I WbPushM
otI

I

WrPush_I Hit M None M WrLine WbPush
MotI

I

S,I InvItoE

RdLine_S Hit S,M None No
Change

RdLine N.A

Miss I RdCode S RdLine

RdLine_I Hit S,M None No
Change

RdLine NA

Miss I RdCur I RdLine

RdLine_I Miss M WbMtoI I RdCur I RdLine

RdLine_S RdCode S

RdLine_I S EvctCln RdCur I

RdLine_S RdCode S

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.3.12.2. Downstream Requests

Table 32. Protocol Flow for Downstream Requests from CPU to AFU

Rx Request Rx Data Tx Response Tx Data

MMIO Read No MMIO Read Data Yes

MMIO Write Yes None NA

UMsg Yes None NA

UMsgH No None NA

1.3.13. Ordering Rules

1.3.13.1. Memory Requests

The CCI-P memory consistency model is different from the PCIe consistency model.
The CCI-P implements a “relaxed” memory consistency model.

It relaxes ordering requirements for requests to:

• Same address

• Different addresses

Table 33 on page 39 defines the ordering relationship between two memory requests
on CCI-P. The same rules apply for requests to the same address or different
addresses. The table entries are defined as follows:

• Yes: Requests from first column may pass request from first row.

• No: Requests from first column cannot pass request from first row.

Table 33. Ordering Rules for Upstream Requests from AFU

Row Bypass Column? Read Write WrFence Interrupt

Read Yes Yes Yes Yes

Write Yes Yes No Yes

WrFence Yes No No No

Interrupt Yes Yes No Yes

You can interpret the table:

• All operations, except reads, are ordered with regards to WrFences.

• All other operations are unordered.

Intra-VC Write Observability

Upon receiving a memory write response, the write has reached a local observability
point.

Note: VA is not a physical channel and there are no such guarantees for requests to VA.

• All future reads from AFU to the same physical channel receive the new data.

• All future writes on the same physical channel replace the data.

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Inter-VC Write Observability

A memory write response does NOT mean the data are globally observable across
channels. A subsequent read on a different channel may return old data and a
subsequent write on a different channel may retire ahead of the original write.
WrFence to VA invokes a protocol that is guaranteed to synchronize across VCs. A
WrFence VA performs a broadcast operation across all channels.

• All writes preceding a write fence are pushed to a global observability point.

• Upon receiving a WrFence response, all future reads from an AFU receive the
latest copy of data written, previously, to the write fence being issued.

1.3.13.1.1. Memory Write Fence

CCI-P WrFence Request

CCI-P defines a WrFence request type, this can be used for all VCs, including VA. The
FIU implementation of WrFence stalls the C1 channel and hence block all write
streams sharing the CCI-P write path. Furthermore, a WrFence request guarantees
global observability, which means for PCIe paths, FIU generates a Zero Length Read
(ZLR) to push out the writes. Given this, WrFence requests could incur long stalls on
the C1 Channel. To avoid this from happening, restrict its use to synchronization
points in your AFU's data flow.

• WrFence guarantees that all interrupts or writes preceding the fence are
committed to memory before any writes following the Write Fence are processed.

• A WrFence is not re-ordered with other memory writes, interrupts, or WrFence
requests.

• WrFence provides no ordering assurances with respect to Read requests.

• A WrFence does NOT block reads that follow it. In other words, memory reads can
bypass a WrFence. This rule is described in the "Memory Requests" section.

• WrFence request has a vc_sel field. This allows determination of which virtual
channels the WrFence is applied to. For example, if moving the data block using
VL0, only serialize with respect to other write requests on VL0. That is, you must
use WrFence with VL0. Similarly, if using memory writes with VA, then use
WrFence with VA.

• A WrFence request returns a response. The response is delivered to the AFU over
RX C1 and identified by the resp_type field. Since reads can bypass a WrFence, to
ensure the latest data is read in a write followed by read (RaW hazard), issue a
WrFence and then wait for the WrFence response before issuing the read to the
same location.

Write Response Counting

AFU implements the memory write barrier, it can do this by waiting for all outstanding
writes to complete before sending the next write after the barrier. The logic to track
the outstanding writes can be a simple counter that increments on request and
decrements on response, hence the name "write response counting". Write responses
only guarantee local observability. This technique only works for implementing a
memory barrier on a write stream targeted to a single VC (for example: VL0, VH0,
VH1). This technique should not be used if a write stream uses VA or a mix of VCs.

Note: In cases such as these, you should implement a write fence instead.

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

One of the key advantages of this technique is that AFU can implement fine grained
barriers. For example, if AFU has two independent write streams, it can implement a
write response tracker per stream. If write stream 1 needs a memory barrier, it would
only stall the writes from stream 1 while continuing to send writes from stream 2. The
Mdata field can be used to encode the stream id. Such a fine grained memory barrier
may:

• Minimize the latency cost of the barrier because it would only wait on specific
outstanding writes to complete, instead of all of them.

• Improve link utilization because unrelated write streams can continue to make
forward progress.

Related Information

Memory Requests on page 39

1.3.13.1.2. Memory Consistency Explained

CCI-P can re-order requests to the same and different addresses. It does not
implement logic to identify data hazards for requests to same address.

Two Writes to the Same VC

Memory may see two writes to the same VC in a different order from their execution,
unless the second write request was generated after the first write response was
received. This is commonly known as a write after write (WaW) hazard.

The table below shows two writes to the same VC when the second write is executed
after the first write is received.

Table 34. Two Writes to Same VC, Only One Outstanding

AFU Processor

VH1: Write1 Addr=X, Data=A

Resp 1

VH1: Write2 Addr=X, Data=B

Resp 2

—

— Read1 Addr=X, Data = A

Read2 Addr=X, Data = B

AFU writes to address X twice on same VC, but it only sends the second write after the
first write is received. This ensures that the first write was sent out on the link, before
the next one goes out. The CCI-P guarantees that these writes are seen by the
Processor in the order that they were issued. The processor sees Data A, followed by
Data B when reading from address X multiple times.

Use a WrFence instead to enforce ordering between writes to same VC. Note that
WrFence has stronger semantics, it stalls processing all writes after the fence until all
previous writes have completed.

Two Writes to Different VCs

The table below shows two writes to different VCs may be committed to memory in a
different order than they were issued.

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 35. Write Out of Order Commit

AFU Processor

VH1: Write1 X, Data=A

VL0: Write2 X, Data=B

—

— Read1 X, Data = B

Read2 X, Data = A

AFU writes to X twice, Data=A over VH1 and Data=B over VL0. The processor polls on
address X and may see updates to X in reverse order; that is, the CPU may see
Data=B, followed by Data=A. In summary, the write order seen by the processor may
be different from the order in which AFU completed the writes. Writes to separate
channels have no ordering rules and as a result you should broadcast a write fence to
VA to synchronize across them.

The table below shows the use of WrFence to enforce write ordering.

Table 36. Use WrFence to Enforce Write Ordering

AFU Processor

VH1: Write1 Addr=X, Data=A

VA: WrFence

VL0: Write2 Addr=X, Data=B

—

— Read1 Addr=X, Data = A

Read2 Addr=X, Data = B

This time the AFU adds a VA WrFence between the two writes. The WrFence ensures
that the writes become visible to the processor before the WrFence followed by the
writes after the WrFence. Hence, the processor sees Data=A and then Data=B. The
WrFence was issued to VA, because the writes to be serialized were sent on different
VCs.

Two Reads from Different VCs

Issuing reads to different VCs may complete out of order; the last read response may
return old data.

The table below shows how reads from the same address over different VCs may
result in re-ordering.

Table 37. Read Re-Ordering to Same Address, Different VCs

Processor AFU

Store addr=X, Data=A

Store addr=X, Data=B

Request Response

VH1: Read1 Addr=X —

VL0: Read2 Addr=X —

— VL0: Resp2 Addr=X, Data=B

— VH1: Resp1 Addr=X, Data=A

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Processor writes X=1 and then X=2. The AFU reads address X twice over different
VCs. Read1 was sent on VH1 and Read2 on VL0. The FIU may re-order the responses
and return data out of order. AFU may see X=2, followed by X=1. This is different
from the processor write order.

Two Reads from the Same VC

Reads to the same VC may complete out of order; the last read response always
returns the most recent data. The last read response may correspond to an older read
request as shown in the following table.

Note: VA reads behave like two reads from different VCs.

The following table shows how reads from the same address over the same VC may
result in re-ordering. However, the AFU sees updates in the same order in which they
were written.

Table 38. Read Re-Ordering to Same Address, Same VC

Processor AFU

Store Addr=X, Data=A

Store Addr=X, Data=B

Request Response

VL0: Read1 Addr=X —

VL0: Read2 Addr=X —

— VL0: Resp2 Addr=X, Data=A

— VL0: Resp1 Addr=X, Data=B

Processor writes X=1 and then X=2. The AFU reads address X twice over the same
VC. Both Read1 and Read2 are sent to VL0. The FIU may still re-order the read
responses, but the CCI-P standard guarantees to return the newest data last; that is,
the AFU sees updates to address X in the order in which processor writes to it.

When using VA, FIU may return data out of order, because VA requests may be
directed to VL0, VH0 or VH1.

Read-After-Write from Same VC

CCI-P standard does not order read and write requests to even the same address. The
AFU must explicitly resolve such dependencies.

Read-After-Write from Different VCs

The AFU cannot resolve a read-after-write dependency when different VCs are used.

Write-after-Read to Same or Different VCs

CCI-P does not order write after read requests even when they are to the same
address. The AFU must explicitly resolve such dependencies. The AFU must send the
write request only after read response is received.

Transaction Ordering Example Scenarios

Transactions to the Same Address—More than one outstanding read/write requests to
an address results in non-deterministic behavior.

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Example 1: Two writes to same address X can be completed out of order. The
final value at address X is non-deterministic. To enforce ordering add a WrFence
between the write requests. Or, wait for the response from the first write to return
before issuing the second write if the same virtual channel is accessed.

• Example 2: Two reads from same address X, may be completed out of order. This
is not a data hazard, but an AFU developer should make no ordering assumptions.
The second read response received contains the latest data stored at address X
assuming both reads are issued to the same virtual channel.

• Example 3: Write to address X, followed by read from address X. It is non-
deterministic; that is, the read returns the new data (data after the write) or the
old data (data before the write) at address X. To ensure the latest data is read
wait for the write response to return before issuing the read to address X using
the same virtual channel.

• Example 4: Read followed by write to address X. It is non-deterministic; that is,
the read returns the new data (data after the write) or the old data (data before
the write) at address X.

Use the read responses to resolve read dependencies.

Transactions to Different Addresses—Read/write requests to different addresses may
be completed out of order.

• Example 1: AFU writes the data to address Z and then wants to notify the SW
thread by updating a value of flag at address X.

To implement this, the AFU must use a write fence between write to Z and write to
X. The write fence ensures that Z is globally visible before write to X is processed.

• Example 2: AFU reads data starting from address Z and then wants to notify a
software thread by updating the value of flag at address X.

To implement this, the AFU must perform the read from Z, wait for all the read
responses and then perform the write to X.

1.3.13.2. MMIO Requests

The FIU maps the AFU's MMIO address space to a 64-bit prefetchable PCIe BAR. The
AFU's MMIO mapped registers does not have read side-effects; and writes to these
registers are able to tolerate write-merging.

For more information about prefetchable BAR, refer to the PCIe Specification.

MMIO requests targeted to the AFU, are sent to the AFU in the same order they were
received from the PCIe link. Similarly, MMIO read responses are returned to the PCIe
link in the same order that the AFU sends it to the CCI-P interface. In other words, the
FIU does not re-order MMIO requests or responses targeted to the AFU.

The IA processor can map the PCIe BAR as either a UC or WC memory type. Table 39
on page 45 summarizes the IA’s ordering rules for UC and WC typed BAR.

For more information about uncacheable (UC) and write combining (WC) ordering
rules, refer to the Intel Software Developers Manual.

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 39. MMIO Ordering Rules

Request Memory Attribute Payload Size Memory Ordering Comments

MMIO Write UC 4 bytes, 8 bytes, or
64 bytes

Strongly ordered Common case-
software behavior

WC 4 bytes, 8 bytes, or
64 bytes (requires
Intel Advanced Vector
Extensions 512 (Intel
AVX-512))

Weakly ordered Special case

MMIO Read UC 4 bytes or 8 bytes Strongly ordered Common case-
software behavior

WC 4 bytes or 8 bytes Weakly ordered Special case-
streaming read
(MOVNTDQA) can
cause wider reads.
NOT supported

Related Information

Intel Software Developers Manual

1.3.14. Timing Diagram

This section provides the timing diagrams for CCI-P interface signals.

Figure 19. Tx Channel 0 and 1 Almost Full Threshold

H0 H1 H2 H3 H4 H5 H6 H7 H8 H9

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9pck_af2cp_sTx.c1.data

pck_af2cp_sTx.c1.hdr

pck_af2cp_sTx.c1.valid

pck_cp2af_sRx.c1.TxAlmostFull

pClk

Up to 8 Valid Cycles

Note: The TX channel 0 and 1, almost full threshold signals, assert when there is room for
only eight more transactions to be accepted. TX channels 0 and 1 must deassert the
valid signals up to eight cycles after almost full asserts.

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

45

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 20. Write Fence Behavior

The WrFence is inserted between WrLine requests. A WrFence response returns from
Rx channel 1.

Note: In Figure 20 on page 46, all of the writes generated before the WrFence are responded
to (completed) before any of the writes that arrive after the WrFence are completed.

The WrFence only fences previous writes issued to the VC selected. Chose VA to fence
writes across all VCs.

Figure 21. C0 Rx Channel Interleaved between MMIO Requests and Memory Responses

Rd0 Wr0 Wr1 Rd1 Rd2 H7Rsp0 Wr4Wr3Wr2

MMIO Wr Request MMIO Rd Request Memory Rd Response

D1D0 H7D0 D4D3D2

pck_cp2af_sRx.c0.rspValid

pck_cp2af_sRx.c0.hdr

pck_cp2af_sRx.c0.data[63:0]

Color Legend

pck_cp2af_sRx.c0.mmioRdValid

pck_cp2af_sRx.c0.mmioWrValid

pClk

Figure 22. MMIO Read Response Timeout

Max response latency 65,536 pClk cycles

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The AFU responds to MMIO read transactions in a Max response time of 65,536 pClks
cycles.

1.3.15. CCI-P Guidance

This section suggests techniques and settings that are useful when beginning to use
the Integrated FPGA Platform or Intel FPGA PAC with Intel FPGA IP system.

The CCI-P interface provides several advanced features for fine grained control of
FPGA caching states and virtual channels. When used correctly, optimal performance
through the interface can be obtained; if used incorrectly, you may see significant
degradation in performance.

The table below lists some suggested parameters for request fields.

Table 40. Recommended Choices for Memory Requests

Field Recommended Option

vc_sel For producer-consumer type flows VA

For latency sensitive flows VL0

For data dependent flow Use any one of the VCs, except VA; or
use MPF's VC map

cl_len For maximum bandwidth 4 CLs (256 bytes)

req_type Memory reads RdLine_I

Memory writes WrLine_M

Use the following guidance, when setting the size of the request buffers in the AFU:

• Intel FPGA PAC

— 64 outstanding requests on VH0

— VA and VH0 can share the same 64 outstanding request buffers

• Integrated FPGA Platform

— VH0 and VH1 can each have 64 outstanding requests.

— VL0 requires at least 128 transactions in flight to reach full bandwidth, and no
more than 256 outstanding requests are required to cover the long latency
tail.

— For VA, maximum performance can be achieved with a minimum of 256
transactions and a maximum of 384 transactions. Consider sharing VA buffers
with other VCs, to save design area.

1.4. AFU Requirements

This section defines the AFU initialization flow upon power on and the mandatory AFU
control and status registers (CSRs).

For more information about AFU CSRs, refer to the "Device Feature List" section.

Related Information

Device Feature List on page 51

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4.1. Mandatory AFU CSR Definitions

The following requirements are defined for software access to AFU CSRs.

1. Software is expected to access 64-bit CSRs as aligned quad words (8 bytes). To
modify a field (for example, bit or byte) in a 64-bit register, the entire quad word
is read, the appropriate field(s) are modified, and the entire quad word is written
back (read-modify-write operation).

2. Similarly for an AFU supporting 32-bit CSRs, software is expected to access them
as aligned double words (4 bytes).

Each CCI-P-compliant AFU is required to implement the four (not including
DEV_FEATURE_HDR (DFH) at 0x0000) mandatory registers defined in the table
below. If you do not implement these registers or if you implement them incorrectly,
AFU discovery could fail or some other unexpected behavior may occur.

Table 41. Register Attribute Definition

Attribute Expansion Description

RO Read Only The bit is set by hardware only.
Software can only read this bit. Writes
do not have any effect.

Rsvd Reserved Reserved for future definition. AFU
must set them to 0s. Software must
ignore these fields.

Table 42 on page 48 shows both byte and DWORD offsets for the mandatory AFU
CSRs. The base address is set by the platform and need not be specified by the AFU.

Table 42. Mandatory AFU CSRs

Name DWORD Address
Offset

(CCI-P)

Byte Address
Offset

(Software)

DEV_FEATURE_HDR (DFH)
For bit descriptions, refer to Table 43 on page 49.
Note: AFU CSRs are 64 bits.

0x0000 0x0000

AFU_ID_L
Lower 64 bits of the AFU_ID GUID.

0x0002 0x0008

AFU_ID_H
Upper 64 bits of the AFU_ID GUID.

0x0004 0x0010

DFH_RSVD0 0x0006 0x0018

DFH_RSVD1 0x0008 0x0020

Figure 23 on page 49 shows how the AFU might set the mandatory AFU CSRs. You
must define your own AFU ID. Note that the AFU uses DWORD addresses. Figure 24
on page 49 shows how software program might read the AFU ID.

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 23. Set the Mandatory AFU Registers in the AFU

The software and the AFU RTL must reference the same AFU ID.

Figure 24. Software Reads the AFU ID

Table 43. Feature Header CSR Definition
Address Offset = 0x0

Bit Attribute Default Description

63:60 RO 0x1 Type: AFU

59:52 Rsvd 0x0 Reserved

51:48 RO 0x0 AFU Minor version number
User defined value

47:41 Rsvd 0x0 Reserved

40 RO N/A End of List
1’b0: There is another feature header beyond this
(see “Next DFH Byte Offset”)
1’b1: This is the last feature header for this AFU

39:16 RO 0x0 Byte offset to the Next Device Feature Header; that is,
offset from the current address.
For an example of DFH byte offset, refer to Table 45
on page 54.

15:12 RO 0x0 AFU Major version number

continued...

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bit Attribute Default Description

User defined value

11:0 RO N/A CCI-P version number
Use the CCIP_VERSION_NUMBER parameter from
ccip_if_pkg.sv

1.4.2. AFU Discovery Flow

A CCI-P compliant AFU must implement the mandatory AFU CSRs. The following figure
shows initial transactions immediately after pck_cp2af_softReset is de-asserted.
The AFU has to accept the MMIO Read cycles immediately after soft reset is de-
asserted.

Figure 25. AFU Discovery Flow

User
Application

Driver

FIU

User
AFU

Install Driver

Driver checks if all old
requests are drained

Enumerate
AFU DFH

Read AFU_ID

Driver hands
over AFU

control to
application

Publish AFU resource/
Allocate AFU

Rsp(DFH type=AFU_ID_H)

Rsp(DFH type=AFU_ID_L)

Rsp(DFH type=AFU) Rsp(DFH type=AFU)

Rsp(AFU_ID-L)

Rsp(AFU_ID-H)

MMIO Rd (AFU_ID_H)

MMIO Rd (AFU_ID_L)

MMIO Rd (DFH)

MMIO Rd to FIU CSR

pck_af_softReset=0

MMIO Rd (0x0) AFU out of Reset

MMIO Rd (0x8)

MMIO Rd (0x10)

De-assert Port Reset

Response with Reset status

1.4.3. AFU_ID

The purpose of an AFU_ID is to precisely identify the architectural interface of an AFU.
This interface is the contract that the AFU makes with the software.

Multiple instantiations of an AFU can have the same AFU_ID value, but if the
architectural interface of the AFU changes, then it needs a new AFU_ID.

The architectural interface of an AFU comprises the syntax and semantics of the AFU
design, consisting of the AFU’s functionality, its CSR definitions, the protocol expected
by the AFU when manipulating its CSRs, and all implicit or explicit assumptions or
guarantees about its buffers.

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The software framework and the application software use the AFU_ID to ensure that
they are matched to the correct AFU; that is, that they are obeying the same
architectural interface.

The AFU_ID is a 128-bit value, and can be generated using an UUID/GUID generator
to ensure the value is unique.

For more information about UUID/GUID, refer to the "Online GUID Generator" web
page.

Related Information

Online GUID Generator

1.5. Intel FPGA Basic Building Blocks

Intel FPGA Basic Building Blocks (BBBs) are Intel-provided IPs that users can
instantiate in their AFU. There are two types of BBBs: software-visible (exposes a
register interface and requires software interaction) and software-invisible (does not
require software interaction). In both cases, if you are the AFU developer, it is your
responsibility to integrate the hardware and software into your AFU.

For more information about BBBs, refer to the "Intel FPGA Basic Building Blocks
(BBB)" web page.

Related Information

Intel FPGA Basic Building Blocks (BBB)

1.6. Device Feature List

This section defines a Device Feature List (DFL) structure that creates a linked list of
features within MMIO space, thus providing an extensible way of adding and
enumerating features. A feature region (sometimes referred to as a “feature”) is a
group of related CSRs. For example, two different features of a DMA engine can be
queue management and QoS functions. You can group queue management and QoS
functions into two different feature regions. A Device Feature Header (DFH) register
marks the start of the feature region.

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

51

https://www.guidgenerator.com
https://github.com/OPAE/intel-fpga-bbb/wiki
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The software can walk through the DFL to enumerate the following:

• AFU

— An AFU is compliant to the CCI-P interface and connected directly to the CCI-P
Port. Must implement mandatory AFU registers, including AFU ID.

— The AFU DFH must be located at MMIO address 0x0.

• Private features

— These are a linked list of features within the AFU, which provides a way of
organizing functions within an AFU. It is the AFU developer’s responsibility to
enumerate and manage them.

— They are not required to implement a ID.

• Intel FPGA Basic Building Blocks

— Are special features within the AFU, which are meant to be reusable building
blocks (design once, reuse many times). Software visible Intel FPGA Basic
Building Blocks typically come with a corresponding software service to
enumerate and configure the Intel FPGA Basic Building Blocks, and possibly
provide a higher-level software interface to the Intel FPGA Basic Building
Blocks.

— Do not have strong hardware interface requirements like an AFU, but must
have well defined architectural semantics from a software point of view.

— Must implement the mandatory DFH registers when visible.

— Must implement a GUID only for software-visible Intel FPGA Basic Building
Blocks.

The following figure shows an example of an AFU’s feature hierarchy made up of BBBs
and private features.

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 26. Example Feature Hierarchy

(Mandatory)
Address: 0x0

DFH Type = AFU
EOL = 0

Private Feature 1
EOL = 0

BBB Feature 2
EOL = 0

Private Feature 3
EOL = 1

A Device Feature Header (DFH) register (shown in below) marks the start of the
feature region.

Table 44. Device Feature Header CSR

Device Feature Header

Bit Description

63:60 Feature Type

4’h1 – AFU 4’h2 – BBB 4’h3 – Private Features

59:52 Reserved

51:48 AFU Minor version number
User defined value

Reserved

47:41 Reserved

40 End of List

continued...

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Device Feature Header

Bit Description

1’b0 There is another feature header beyond this (see “Next DFH Byte Offset”)
1’b1 This is the last feature header for this AFU

39:16 Next DFH Byte offset
Next DFH Address = Current DFH Address + Next DFH Byte offset
Also used as indication for the maximum size of MMIO region occupied by this feature. For
last feature, this offset points to the beginning of the unallocated MMIO region, if any (or
beyond the end of the MMIO space).
Refer to the example in Table 45 on page 54.

15:12 AFU Major VersionNumber
User defined

Feature Revision Number
User defined

11:0 CCI-P Version Number
Use the
CCIP_VERSION_NUMBER
parameter from
ccip_if_pkg.sv

Feature ID
Contains user defined ID to identify features within an AFU

Table 45. Next DFH Byte Offset Example

Feature DFH Address EOL Next DFH Byte Offset

0 0x0 0x0 0x100

1 0x100 0x0 0x180

2-Last Feature 0x280 0x1 0x80

Unallocated MMIO space, no
DFH

0x300 N/A N/A

A DFH with the type set to BBB must be followed by the mandatory BBB registers
listed below.

Table 46. Mandatory BBB DFH Register Map

Byte Address offset within DFH Register Name

0x0000 DFH Type=BBB

0x0008 BBB_ID_L

0x0010 BBB_ID_H

Table 47. BBB_ID_L CSR Definition

Register Name BB_ID_L

Bit Attribute Description

63:0 RO Lower 64-bits of the BBB_ID ID

Table 48. BBB_ID_H CSR Definition

Register Name BB_ID_H

Bit Attribute Description

63:0 RO Upper 64-bits of the BBB_ID ID

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The BBB_ID is an GUID, similar in concept to an AFU_ID. It is defined so that each
BBB has a unique identifier. This allows the software to identify the software service
associated with the BBB hardware.

The figure below shows how a logical feature hierarchy (shown on left-hand side) can
be expressed using DFH registers defined in this section.

Figure 27. Device Feature Conceptual View

+

+

+

Type=AFU
63 0

AFU DFH
(Mandatory)

Feature 1 Addr

Logical View Register Map

DFH
Type-AFU

EOL=0

Feature 2 Addr

Feature 3 Addr

End of Feature List

AFU minor # AFU major # CCI-P version #

Feature IDFeature Rev

Feature IDFeature Rev

Feature IDFeature Rev

Feature CSRs

Feature CSRs

Feature CSRs

Reserved
Reserved

AFU_ID_L
AFU_ID_H

GUID_H
GUID_L

EOL=0

Next DFH Byte Offset

Next DFH Byte Offset

Next DFH Byte Offset

Next DFH Byte OffsetEOL=1ReservedType=Priv

EOL=0ReservedType=Priv

Type=BBB Reserved EOL=0

Private
Feature 1

EOL=0

BBB
Feature 2

EOL=0

Private
Feature 3

EOL=1

No If==1

If==1

If!=1

If==1No

No

Yes

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Send Feedback Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.7. Document Revision History for Intel Acceleration Stack for
Intel Xeon CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

Document
Version

Intel Acceleration Stack Version Changes

2019.11.04 2.0.1 (supported with Intel Quartus® Prime Pro
Edition 19.2)and 2.0 (supported with Intel
Quartus Prime Pro Edition 18.1.2) and 1.2
(supported with Intel Quartus Prime Pro Edition
17.1.1)

Added the feature CCI-P Byte Enable.

2019.08.05 2.0 (supported with Intel Quartus Prime Pro
Edition 18.1.2) and 1.2 (supported with Intel
Quartus Prime Pro Edition 17.1.1)

• Acronym List for Acceleration Stack for CPU
with FPGAs Core Cache Interface (CCI-P)
Reference Manual: Added Intel FPGA
Programmable Acceleration Card (Intel FPGA
PAC) to the RdLine_I acronym.

• Memory and Cache Hierarchy: Updated the
Intel FPGA PAC Memory Hierarchy figure.

• CCI-P Interface: Updated the CCI-P Signals
figure.

• MMIO Requests: Changed 64-byte to 64-bit in
this sentence: "The FIU maps the AFU's MMIO
address space to a 64-bit prefetchable PCIe
BAR."

2018.12.04 1.2 (supported with Intel Quartus Prime Pro
Edition 17.1.1)

Added the "Intel Acceleration Stack for Intel Xeon
CPU with FPGAs Core Cache Interface (CCI-P)
Reference Manual Archives" section that contains
the archived versions of this document.

2018.08.06 1.1 (supported with Intel Quartus Prime Pro
Edition 17.1.1) and 1.0 (supported with Intel
Quartus Prime Pro Edition 17.0.0)

Removed detailed clock frequencies from Table 6
in the "Comparison of FIU Capabilities" section;
and removed the "Clock Frequency" section from
the document.
Note: Removed clock frequencies from document

because there are multiple platforms
discussed in this document.

2018.04.11 1.0 (supported with Intel Quartus Prime Pro
Edition 17.0)

• Document restructured to explicitly define the
differences between the Intel FPGA PAC and
the Integrated FPGA Platform.

• Added IRQ ordering with respect to writes,
reads, and write fences added to the "Memory
Requests" section.

1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference
Manual

683193 | 2019.11.04

Intel Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual

Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20Acceleration%20Stack%20for%20Intel%20Xeon%20CPU%20with%20FPGAs%20Core%20Cache%20Interface%20(CCI-P)%20Reference%20Manual%20(683193%202019.11.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Intel Acceleration Stack for Intel Xeon CPU with FPGAs Core Cache Interface (CCI-P) Reference Manual
	Contents
	1. Acceleration Stack for Intel® Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference Manual
	1.1. About this Document
	1.1.1. Intended Audience
	1.1.2. Conventions
	1.1.3. Related Documentation
	1.1.4. Acronym List for Acceleration Stack for Intel Xeon® CPU with FPGAs Core Cache Interface (CCI-P) Reference Manual
	1.1.5. Acceleration Glossary

	1.2. Introduction
	1.2.1. FPGA Interface Manager (FIM)
	1.2.2. Intel FPGA Interface Unit (FIU)
	1.2.2.1. FIU for Intel FPGA PAC
	1.2.2.2. FIU for Intel Integrated FPGA Platform
	1.2.2.3. Comparison of FIU Capabilities

	1.2.3. Memory and Cache Hierarchy

	1.3. CCI-P Interface
	1.3.1. Signaling Information
	1.3.2. Read and Write to Main Memory
	1.3.2.1. Reading from Main Memory
	1.3.2.2. Writing to Main Memory

	1.3.3. Interrupts
	1.3.4. UMsg
	1.3.5. MMIO Accesses to I/O Memory
	1.3.6. CCI-P Tx Signals
	1.3.7. Tx Header Format
	1.3.8. CCI-P Rx Signals
	1.3.8.1. Rx Header and Rx Data Format

	1.3.9. Multi-Cache Line Memory Requests
	1.3.10. Byte Enable Memory Request (Intel FPGA PAC D5005)
	1.3.10.1. Mixing Byte Enable and Full Cache Line Accesses

	1.3.11. Additional Control Signals
	1.3.12. Protocol Flow
	1.3.12.1. Upstream Requests
	1.3.12.2. Downstream Requests

	1.3.13. Ordering Rules
	1.3.13.1. Memory Requests
	1.3.13.1.1. Memory Write Fence
	1.3.13.1.2. Memory Consistency Explained

	1.3.13.2. MMIO Requests

	1.3.14. Timing Diagram
	1.3.15. CCI-P Guidance

	1.4. AFU Requirements
	1.4.1. Mandatory AFU CSR Definitions
	1.4.2. AFU Discovery Flow
	1.4.3. AFU_ID

	1.5. Intel FPGA Basic Building Blocks
	1.6. Device Feature List
	1.7. Document Revision History for Intel Acceleration Stack for Intel Xeon CPU with FPGAs Core Cache Interface (CCI-P) Reference Manual

