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AN 433: Constraining and Analyzing
Source-Synchronous Interfaces

This application note describes techniques for constraining and analyzing 
source-synchronous interfaces. In source-synchronous interfaces, the source of the 
clock is the same device as the source of the data, rather than another source, such as a 
common clock network.

Figure 1 shows a block diagram of a basic source-synchronous interface.

Introduction
Source-synchronous interfaces are used for high-speed data transfer. DDR memory, 
HyperTransport buses, and the SPI-4.2 standard all use source-synchronous 
interfaces.

Constraining source-synchronous interfaces can be complex. The Synopsys Design 
Constraints (SDC) format provides the necessary detail and precision for a proper 
analysis. Familiarize yourself with the SDC format and the TimeQuest timing 
analyzer before you read this application note.

f For more information, refer to the SDC and TimeQuest API Reference Manual and the 
Quartus II TimeQuest Timing Analyzer chapter of the Quartus II Handbook.

This application note is divided into two main sections: 

■ “Source-Synchronous Outputs” on page 6

■ “Source-Synchronous Inputs” on page 39

These sections include descriptions of the output and input interfaces and details 
about the three types of SDC constraints or exceptions that apply to each direction.

You can use a script included with the Quartus® II software installation to guide you 
through the process of creating constraints for source-synchronous interfaces. To use 
the script, type the following command in your project directory:

quartus_sta --ssc <project name>

Figure 1. Basic Source-Synchronous Interface
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Clock and Data Relationship
Some source-synchronous interfaces use a clock that is edge-aligned with the data, as 
shown in Figure 2. When a clock is edge-aligned with the data, the receiving device 
shifts the clock as necessary to capture the data. Some interfaces capture data after the 
first rising or falling clock edge. Therefore, further logic is required in addition to a 
clock shift after the first rising or falling latch edge.

Other source-synchronous interfaces use a clock that is shifted with respect to the data 
(typically center-aligned with the data), as shown in Figure 3. The receiving device 
directly uses the shifted clock to capture the data, especially in low-speed interfaces.

When a source-synchronous input clock directly latches the data, the receiving device 
does not perform any extra clock alignment. However, in some interfaces, a 
phase-locked loop (PLL) shifts the input clock, which is then used to latch the data. If 
a PLL shifts the input clock, you can adjust the clock and data timing relationship by 
adjusting the PLL phase offset.

SDR (Single Data Rate) and DDR (Double Data Rate)
In source-synchronous SDR interfaces, one edge of the clock, typically the rising edge, 
transfers the data, as shown in Figure 4. The time required to transmit one bit, known 
as the unit interval (UI), is equal to the period of the clock.

Figure 2. Edge-Aligned Clock and Data

Figure 3. Center-Aligned Clock and Data
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In source-synchronous DDR interfaces, data is transferred on both edges of the clock, 
as shown in Figure 5. The UI is equal to half the period of the clock, assuming a 50/50 
duty cycle.

Data constraints are necessary for each active clock edge. SDR interfaces require 
constraints for only one active clock edge, typically the rising edge. DDR interfaces 
require constraints that are relative to the rising and falling clock edges.

Example 1 shows constraints that are relative to the rising clock edge. For an SDR 
interface, no other data constraints are necessary. 

A DDR interface requires data constraints that are relative to the falling and rising 
edges of the clock.

When you make data constraints for DDR interfaces, duplicate the constraints that are 
relative to the rising clock edge, and add the -clock_fall and -add_delay 
options so the constraints are relative to the falling clock edge.

Example 2 shows data constraints that are relative to the rising and falling clock 
edges. The -clock_fall option makes the constraint relative to the falling clock 
edge, and the -add_delay option allows multiple maximum or minimum delay 
constraints to apply to the same port. 

Figure 5. DDR Capture
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Example 1. Sample Output Constraints for an SDR Interface

set_output_delay -clock [get_clocks output_clk] -max 2 [get_ports data_out]
set_output_delay -clock [get_clocks output_clk] -min -1 \

[get_ports data_out] -add_delay

Example 2. Sample Output Constraints for a DDR Interface

set_output_delay -clock [get_clocks output_clk] -max 2 [get_ports data_out]
set_output_delay -clock [get_clocks output_clk] -min -1 \

[get_ports data_out] -add_delay
set_output_delay -clock [get_clocks output_clk] -max 2 -clock_fall \

[get_ports data_out] -add_delay
set_output_delay -clock [get_clocks output_clk] -min -1 -clock_fall \

[get_ports data_out] -add_delay
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Interface Constraints
Source-synchronous interfaces require the following three types of SDC constraints or 
exceptions:

■ Clock constraints—Define the clocks used in the interface. Clock constraints 
define the period and include any other clock characteristics such as offset and 
uncertainty.

■ Input or output delay constraints—Describe the required times for data to be 
valid at the interface. Input and output delay constraints are derived from timing 
parameters, such as skew, tSU, or tCO that specify the interface operation. 

There are two methods for deriving input and output delays for 
source-synchronous interfaces based on the available or specified I/O timing:

■ System-centric method—Takes into account the timing information for the 
FPGA as part of a larger system. Such timing information includes board trace 
delays and I/O timing requirements of the external device to which the FPGA 
interfaces. You can create constraints to describe these delays that are part of 
the system outside the FPGA. Use the system-centric method when you have 
timing information about the system with which the FPGA interfaces, or if you 
want to verify the system timing on that interface.

■ FPGA-centric (or data sheet) method—Focuses on the clock and data 
relationship at the boundary of the FPGA. This method does not require any 
information about timing parameters outside the FPGA, such as board trace 
delays and I/O timing requirements of external devices. You can create 
constraints to specify the maximum acceptable skew across the data bus, and 
the timing relationship between the data and clock signals (center or edge 
alignment, for example). Use the FPGA-centric method when you constrain the 
source-synchronous interface for a specific skew and clock and data 
relationship. You can also use the FPGA-centric approach when you do not 
know the external device timing parameters.

■ Timing exceptions—Control launch and latch edges used in timing analysis. 
Timing exceptions ensure that valid timing paths in the interface are analyzed, and 
invalid paths are not analyzed. For more information about why timing exceptions 
are necessary, refer to “Default Timing Analysis Behavior”.

1 If you do not plan to migrate your design to HardCopy® devices, you can use the 
set_max_skew constraint to constrain source-synchronous interfaces. Altera 
recommends you use the methods described in this application note to constrain and 
analyze source-synchronous interfaces.

Default Timing Analysis Behavior
By default, timing analysis operates on the assumption that data launched by the 
rising clock edge is latched by the next rising clock edge. Source-synchronous 
interfaces, however, often exhibit different behavior. Data may be latched by the same 
edge that launches it, and source-synchronous DDR interfaces launch and latch data 
on rising and falling clock edges.
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Figure 6 shows the setup relationships analyzed by default in an edge-aligned DDR 
interface. Solid red arrows indicate same-edge transfers (rise-to-rise and fall-to-fall), 
and dashed red arrows indicate opposite-edge transfers (rise-to-fall and fall-to-rise).

Figure 7 shows the hold relationships analyzed by default in an edge-aligned DDR 
interface. Solid blue arrows indicate hold relationships for same-edge transfers 
(rise-to-rise and fall-to-fall), and dashed blue arrows indicate hold relationships for 
opposite-edge transfers (rise-to-fall and fall-to-rise).

Figure 8 shows the setup relationships analyzed by default in a center-aligned DDR 
interface. Solid red arrows indicate same-edge transfers (rise-to-rise and fall-to-fall), 
and dashed red arrows indicate opposite-edge transfers (rise-to-fall and fall-to-rise).

Figure 9 shows the hold relationships analyzed by default in a center-aligned DDR 
interface. Solid blue arrows indicate hold relationships for same-edge transfers 
(rise-to-rise and fall-to-fall), and dashed blue arrows indicate hold relationships for 
opposite-edge transfers (rise-to-fall and fall-to-rise).

Depending on the alignment of your clock and data and the edges used to launch and 
latch data, you may have to add timing exceptions or adjust timing constraints to 
ensure correct timing analysis.

Figure 6. Setup Relationships in an Edge-Aligned DDR Interface

Figure 7. Hold Relationships in an Edge-Aligned DDR Interface

Figure 8. Setup Relationships in a Center-Aligned DDR Interface

Figure 9. Hold Relationships in a Center-Aligned DDR Interface
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For example, if your interface implements same-edge data transfer, you must add 
false path exceptions to the opposite-edge transfers identified in Figure 6 through 
Figure 9, because opposite-edge transfers are invalid for your implementation. 
Likewise, if your interface implements opposite-edge data transfer, you must add 
false path exceptions to the same-edge transfers identified in Figure 6 through 
Figure 9, because same-edge transfers are invalid for your implementation. The false 
path exceptions exclude the invalid paths from timing analysis.

Source-Synchronous Outputs
Source-synchronous outputs require the following types of clock constraints, output 
delay constraints, and timing exceptions:

■ “Output Clock Constraints” on page 7

■ “System-Centric Output Delay Constraints” on page 11

■ “FPGA-Centric Output Delay Constraints” on page 18

■ “System-Centric Output Timing Exceptions” on page 12

■ “FPGA-Centric Output Timing Exceptions” on page 25

Output Clocks

The output clock is sourced by the FPGA. Figure 10 shows an example of how 
a destination clock is sourced by the FPGA.

You can use a variety of circuits to generate the output clock. The following are some 
types of output clocks: 

■ Clocks from a system PLL

■ Clocks generated by a toggling clock output register, such as in the ALTDDIO 
megafunction

■ Clocks controlled by a state machine that clocks data on one clock edge and the 
output clock on another clock edge

■ Clocks driven by the same clock that clocks the data output

For sample clock circuits and SDC constraints, refer to “Output Clock Constraints” on 
page 7. 

Figure 10. Destination Clock Sourced by the FPGA
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Two common options are to use a clock that drives directly off chip, or to use a clock 
that drives off chip through DDR output registers with the ALTDDIO_OUT 
megafunction.

When output clocks are generated independently from the data output register clocks 
(with two PLL taps, for example), you can change the clock and data timing 
relationship by adjusting the relationship between clocks, such as by adjusting the 
PLL phase.

In an FPGA, there is low skew between clock and data outputs when the output clock 
drives through DDR registers because the routing from each DDR register to the 
corresponding output pin is nearly identical. When the clock drives directly off chip, 
the difference in routing types between the DDR data registers and the global clock 
network causes larger skew between clock and data outputs. Also, the allowable clock 
frequency is lower. Using the clock directly is acceptable in interfaces that run at lower 
clock speeds, and that tolerate more output skew between clock and data.

If you implement your design in a HardCopy II device, to achieve the best 
performance, use dedicated PLL outputs for the clock outputs instead of DDR output 
registers. You can use DDR output registers for the clock outputs if the interface is a 
low-speed interface, or if there are more clock outputs than available dedicated PLL 
outputs.

Clocks for the data and clock output DDR registers are generated with a PLL. In some 
cases, the same PLL output drives the data and clock output DDR registers. In other 
cases, two PLL outputs are used. You can use the same PLL output if your design 
contains:

■ Center- or edge-aligned SDR outputs

■ Edge-aligned DDR outputs

You should use separate PLL outputs if your design contains: 

■ Center-aligned DDR outputs (clock and data are 90°out of phase)

■ A clock driving directly off chip (compensate for delay differences between clock 
and data)

■ Clock and data that is not center- or edge-aligned (different than 90° or 180° out of 
phase)

■ Precise adjustment of clock and data relationship (fine-tuning phase adjustment)

Output Clock Constraints
As with any circuit that includes a PLL, you must create generated clocks on the PLL 
outputs. Use the derive_pll_clocks command to automatically create all the 
generated clocks and keep generated clock characteristics (such as period, phase shift, 
and multiplication and division factors) synchronized with your PLL settings. The 
derive_pll_clocks also names the generated clocks according to the PLL output 
and hierarchy name.

Instead of using the derive_pll_clocks command, you can use the 
create_generated_clock command to separately specify each PLL output clock. 
Creating generated clocks individually gives you flexibility in naming the clocks; 
however, you must remember to manually update the clock definitions in your SDC 
file when you change the PLL settings.
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In addition to the generated clocks on PLL outputs, you must create a generated clock 
that is applied to the FPGA output clock port. This generated clock represents the 
clock that drives the destination of the source-synchronous interface, and it is the 
clock reference for output delay constraints. As with any generated clock, you must 
use appropriate phase and inversion options based on the behavior of the circuit that 
drives the clock.

Sample Clock Circuits and Constraints
Figure 11 and Example 3 show the circuit and constraints for an output with a 
common data clock and output clock.

Figure 12 and Example 4 show the circuit and constraints for an edge-aligned output 
with independent data clocks and output clocks.

Figure 11. Direct Clocking
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Example 3. Clock Constraints for an Output with Common Data and Output Clocks

create_clock -name input_clock -period 10.000 [get_ports clk_in]
create_generated_clock -name output_clock -source [get_ports clk_in] \

[get_ports clk_out]

Figure 12. PLL Clocking for Edge-Aligned Output Clocks
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Figure 13 and Example 5 show the circuit and constraints for a DDR center-aligned 
output with independent data clocks and output clocks.

Figure 14 and Example 6 show the circuit and constraints for a DDR output with a 
common data clock and output clock. The output clock is connected via an instance of 
the ALTDDIO_OUT megafunction.

Example 4. Clock Constraints for an Output with Independent Data and Output Clocks

create_clock -name input_clock -period 10.000 [get_ports clk_in]
create_generated_clock -name data_clock -source [get_pins PLL|inclk[0]] \

 [get_pins PLL|clk[0]]
create_generated_clock -name unshifted_clock -source [get_pins PLL|inclk[0]] \ 

 [get_pins PLL|clk[1]]
create_generated_clock -name output_clock -source [get_pins PLL|clk[1]] \

[get_ports clk_out]

Figure 13. PLL Shifted Clocking for Center-Aligned Output Clocks
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Example 5. Clock Constraints for a Center-Aligned Output with Independent Data and Output Clocks

create_clock -name input_clock -period 10.000 [get_ports clk_in]
create_generated_clock -name data_clock -source [get_pins PLL|inclk[0]] \

[get_pins PLL|clk[0]]
create_generated_clock -name shifted_clock -phase 90 -source \

[get_pins PLL|inclk[0]] [get pins PLL|clk[1]]
create_generated_clock -name output_clock -source \

[get_pins PLL|clk[1]] [get_ports clk_out]

Figure 14. Circuit with Common Data Clock and Output Clocks
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Figure 15 and Example 7 show the circuit and constraints for one PLL output driving 
the data DDR registers, and a separate PLL output driving the clock DDR registers.

Figure 16 and Example 8 show the circuit and constraints for a PLL that drives the 
clock directly off chip.

Example 6. Clock Constraints for an Edge-Aligned Output with Common Data and Output Clocks

create_clock -name input_clock -period 10.000 [get_ports clk_in]
create_generated_clock -name common_clock -source \

[get_pins PLL|inclk[0]] [get_pins PLL|clk[0]]
create_generated_clock -name output_clock -source \

[get_pins DDR|ddio_outa[0]|muxsel] [get_ports clk_out]

Figure 15. Output Circuit with Separate Output Clock and Input Clocks
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Example 7. Clock Constraints for an Output with Independent Data and Output Clocks

create_clock -name input_clock -period 10.000 [get_ports clk_in]
create_generated_clock -name data_clock -source [get_pins PLL|inclk[0]] \

 [get_pins PLL|clk[0]]
create_generated_clock -name pll_clock -source [get_pins PLL|inclk[0]] \ 

 [get_pins PLL|clk[1]]
create_generated_clock -name output_clock -source \

[get_pins DDR|ddio_outa[0]|muxsel] [get_ports clk_out]

Figure 16. Output Circuit, Driving Clock Directly Off Chip
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System-Centric Output Delay Constraints
With the system-centric constraint method, the output delay value can include the 
setup or hold time requirement of the receiving device, as well as the board delays on 
data and clock traces, as shown in Figure 17.

Output Maximum Delay
Equation 1 shows the equation to calculate the output maximum delay value. The 
output maximum delay value specifies an upper bound for the output delay because 
it uses the longest data path and the shortest clock path. It defines the setup 
relationship with the destination register.

Example 9 shows the output maximum delay SDC constraint with the output 
maximum delay value from Equation 1. This example is useful if your 
source-synchronous interface contains an SDR output.

Example 10 shows a DDR output that has a duplicate constraint that applies to the 
falling clock edge.

Example 8. Clock Constraints for an Output with Direct Output Clocking

create_clock -name input_clock -period 10.000 [get_ports clk_in]
create_generated_clock -name data_clock -source [get_pins PLL|inclk[0]] \

[get_pins PLL|clk[0]]
create_generated_clock -name pll_clock -source [get_pins PLL|inclk[0]] \ 

[get_pins PLL|clk[1]]
create_generated_clock -name output_clock -source \

[get_pins PLL|clk[1]] [get_ports clk_out]

Figure 17. System-Centric Output

Equation 1. Output Maximum Delay Calculation

Example 9. Output Maximum Delay Constraint

set_output_delay -max <output maximum delay value> -clock \
[get_clocks output_clock][get_ports data_out]

FPGA External Device
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output maximum delay value maximum trace delay for data tSU of external register
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–+=



Page 12 Source-Synchronous Outputs

AN 433: Constraining and Analyzing Source-Synchronous Interfaces © May 2016 Altera Corporation

Output Minimum Delay
Equation 2 shows how to calculate the output minimum delay value. The output 
minimum delay specifies a lower band for the output delay because it uses the 
minimum data delay and the maximum clock delay. It defines the hold relationship 
with the destination register.

Example 11 shows the output minimum delay SDC constraint, with the output 
minimum delay value from Equation 2. This example is useful if your 
source-synchronous interface contains an SDR output.

Example 12 shows a DDR output that has a duplicate constraint that applies to the 
falling clock edge.

Using the -clock_fall option causes the output delay constraint to apply to the 
falling clock edge. Using the -add_delay option allows multiple output delays to 
apply to the data_out ports.

System-Centric Output Timing Exceptions
The following sections describe different alignment and capture edge combinations, 
and show any additional timing exceptions or adjusted constraints that are 
appropriate for each combination. For additional timing exceptions or constraint 
modifications that are necessary for the correct operation, refer to one of the following 
use cases:

■ “Same-Edge Capture Edge-Aligned Output” on page 13

■ “Opposite-Edge Capture Edge-Aligned Output” on page 16

Example 10. Output Maximum Delay Constraints for a DDR Output

set_output_delay -max <output maximum delay value> -clock \
[get_clocks output_clock] [get_ports data_out]

set_output_delay -max <output maximum delay value> -clock \
[get_clocks output_clock] -clock_fall [get_ports data_out] 

-add_delay

Equation 2. Output Minimum Delay Calculation

Example 11. Output Minimum Delay Constraint

set_output_delay -min <output minimum delay value> -clock \
[get_clocks output_clock] [get_ports data_out*]

Example 12. Output Minimum Delay Constraints for a DDR Output

set_output_delay -min <output minimum delay value> -clock \
[get_clocks output_clock] [get_ports data_out*]

set_output_delay -min <output minimum delay value> -clock \
[get_clocks output_clock] -clock_fall [get_ports data_out*] \ 
-add_delay

output minimum delay minimum trace delay for data tH of external register–
maximum trace delay for clock

–=
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■ “Same-Edge Capture Center-Aligned Output” on page 16

■ “Opposite-Edge Capture Center-Aligned Output” on page 17

Same-Edge Capture Edge-Aligned Output
Figure 18 shows the setup and hold relationships that must be analyzed for SDR 
same-edge capture, edge-aligned output. Red arrows indicate setup relationships, and 
blue arrows indicate hold relationships.

Figure 19 shows the setup and hold relationships that must be analyzed for DDR 
same-edge capture. Red arrows indicate setup relationships, and blue arrows indicate 
hold relationships.

To change the default timing analysis method to ensure that the correct setup and 
hold relationships for same-edge capture are analyzed, use one of the following 
exceptions: 

■ “Destination Setup Multicycle Exception” on page 14

■ “Add One Clock Period to Output Maximum Delay” on page 14

Both exception types result in the same timing analysis results, but the multicycle 
exception is a better representation of design intent. 

When using these timing exceptions, you must also add false path exceptions, as 
shown in Example 13, to ensure that opposite-edge transfers are not analyzed.

Figure 18. Desired Setup and Hold for SDR Same-Edge Capture

Figure 19. Desired Setup and Hold for DDR Same-Edge Capture
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Example 13. False Path Exceptions

set_false_path -setup -rise_from [get_clocks data_clock] -fall_to \
[get_clocks output_clock]

set_false_path -setup -fall_from [get_clocks data_clock] -rise_to \
[get_clocks output_clock]

set_false_path -hold -rise_from [get_clocks data_clock] -rise_to \
[get_clocks output_clock]

set_false_path -hold -fall_from [get_cltocks data_clock] -fall_to \
[get_clocks output_clock]
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Destination Setup Multicycle Exception

Example 14 shows the SDC commands to modify the default timing analysis method 
by adding two destination setup multicycle exceptions with a value of zero.

You must specify the rise-to-rise and fall-to-fall edges to ensure that the hold 
relationships are correct. 

When you use destination setup multicycle exceptions with a value of zero, the 
destination clock edges used for setup and hold analysis shift back by one clock edge. 
These timing exceptions adjust the latch edge used for setup analysis to one clock 
edge earlier, that is, zero cycles after the launch edge; and adjust the latch edge used 
for hold analysis to one clock edge earlier, that is, one cycle before the launch edge. 
These latch edge adjustments for setup and hold analysis ensure that the data transfer 
between the clocks happens in zero cycles, as shown in Figure 20. Red arrows indicate 
setup relationships, and blue arrows indicate hold relationships.

Add One Clock Period to Output Maximum Delay

Example 15 shows the SDC commands to modify the output maximum delay value to 
add one clock period.

Adding one clock period to the output maximum delay value does not adjust the 
latch edge, but it shifts the data required time one cycle earlier in time, as shown in 
Figure 21.

Example 14. Destination Setup Multicycle Exceptions

set_multicycle_path -setup -end 0 -rise_from [get_clocks data_clock] \ 
-rise_to [get_clocks output_clock]

set_multicycle_path -setup -end 0 -fall_from [get_clocks data_clock] \
-fall_to [get_clocks output_clock]

Figure 20. Adding a Destination Multicycle Setup of Zero
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Example 15. Adding One Clock Period

set_output_delay -max <output maximum delay value + clock period> -clock \
[get_clocks output_clock] [get_ports data_out]

set_output_delay -max <output maximum delay value + clock period> -clock \
[get_clocks output_clock] -clock_fall [get_ports data_out]
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If you use a small positive phase shift to better align the clock and data outputs, do 
not use the multicycle exception of zero, or the extra clock period described 
previously. A small positive phase shift results in a small setup relationship, and the 
latch edge, analyzed by default, is the same clock edge as the launch edge (with a 
small shift), as shown in Figure 22. Red arrows indicate setup relationships.

If you use a small negative phase shift to better align the clock and data outputs, you 
must use the multicycle exception of zero, or the extra clock period described 
previously. With a small negative phase shift, the correct setup relationship is to the 
edge shifted just before the launch edge, as shown by the solid arrow in Figure 23. The 
dashed arrow indicates the default setup relationship, which is to the next clock edge 
after the launch edge. Red arrows indicate setup relationships.

Figure 21. Adding Clock Period to Output Maximum Delay
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Example 16. False Path Exceptions

set_false_path -setup -rise_from [get_clocks data_clock] -fall_to \
[get_clocks output_clock]

set_false_path -setup -fall_from [get_clocks data_clock] -rise_to \
[get_clocks output_clock]

set_false_path -hold -rise_from [get_clocks data_clock] -rise_to \
[get_clocks output_clock]

set_false_path -hold -fall_from [get_clocks data_clock] -fall_to \
[get_clocks output_clock]

Figure 22. Small Positive Phase Shift, Same-Edge Capture

Figure 23. Small Negative Phase Shift, Same-Edge Capture
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Opposite-Edge Capture Edge-Aligned Output
Figure 24 shows the setup and hold relationships that must be analyzed for 
opposite-edge capture, edge-aligned output. Red arrows indicate setup relationships, 
and blue arrows indicate hold relationships.

Do not use multicycle exceptions for opposite-edge transfers, and do not add a clock 
cycle to the output maximum delay value. The only exceptions necessary for correct 
timing analysis are false path exceptions, as shown in Example 17.

If you use a small positive or negative phase shift to better align the clock and data 
outputs, the false path exceptions shown in Example 17 are still sufficient.

Same-Edge Capture Center-Aligned Output
Figure 25 shows the setup and hold relationships that must be analyzed in a 
same-edge capture, center-aligned output. Red arrows indicate setup relationships, 
and blue arrows indicate hold relationships.

Do not use any multicycle exceptions, and do not add a clock cycle to the output 
maximum delay value. The only exceptions necessary for correct timing analysis are 
false path exceptions for opposite-edge transfers, as shown in Example 18.

Figure 24. Desired Setup and Hold for Opposite-Edge Capture, Edge-Aligned Output

Data Clock

Output Clock

Example 17. False Path Exceptions

set_false_path -setup -rise_from [get_clocks data_clock] -rise_to \
[get_clocks output_clock]

set_false_path -setup -fall_from [get_clocks data_clock] -fall_to \
[get_clocks output_clock]

set_false_path -hold -rise_from [get_clocks data_clock] -fall_to \
[get_clocks output_clock]

set_false_path -hold -fall_from [get_clocks data_clock] -rise_to \
[get_clocks output_clock]

Figure 25. Desired Setup and Hold for Same-Edge Capture, Center-Aligned Output

Data Clock

Output Clock
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If you use a small positive or negative phase shift to better align the clock and data 
outputs, the false path exceptions in Example 18 are still sufficient. Figure 26 shows 
small positive and negative phase shifts that must be analyzed for a center-aligned 
source-synchronous output. The latch edge for the same-edge transfer never changes. 
Red arrows indicate setup relationships.

Opposite-Edge Capture Center-Aligned Output
Figure 27 shows the setup and hold relationships that must be analyzed for 
opposite-edge capture, center-aligned output. Red arrows indicate setup 
relationships, and blue arrows indicate hold relationships.

The only exceptions required for correct timing analysis are false path exceptions, as 
shown in Example 19, to prevent timing analysis on same-edge transfers.

Example 18.

set_false_path -setup -rise_from [get_clocks data_clock] -fall_to \
[get_clocks output_clock]

set_false_path -setup -fall_from [get_clocks data_clock] -rise_to \
[get_clocks output_clock]

set_false_path -hold -rise_from [get_clocks data_clock] -rise_to \
[get_clocks output_clock]

set_false_path -hold -fall_from [get_clocks data_clock] -fall_to \
[get_clocks output_clock]

Figure 26. Small Positive or Negative Phase Shifts, Same-Edge Capture

Figure 27. Desired Setup and Hold for Opposite-Edge Capture, Center-Aligned Output

Data Clock

Output Clock

Virtual Clock

Data Clock

Example 19.

set_false_path -setup -rise_from [get_clocks data_clock] -rise_to \
[get_clocks output_clock]

set_false_path -setup -fall_from [get_clocks data_clock] -fall_to \
[get_clocks output_clock]

set_false_path -hold -rise_from [get_clocks data_clock] -fall_to \
[get_clocks output_clock]

set_false_path -hold -fall_from [get_clocks data_clock] -rise_to \
[get_clocks output_clock]



Page 18 Source-Synchronous Outputs

AN 433: Constraining and Analyzing Source-Synchronous Interfaces © May 2016 Altera Corporation

FPGA-Centric Output Delay Constraints
The FPGA-centric constraint method uses constraints derived from the clock and data 
relationship, as shown in Equation 3. The data must arrive within a skew time 
window on either side of the clock arrival time.

Figure 28 shows the clock and data arrival time relationship.

FPGA-centric constraints are based on a clock offset between the data and output 
clocks, and a skew requirement for the data. Clock offset is the time difference 
between the data clock edge and output clock edge. In an edge-aligned interface, the 
clock offset is zero. In a center-aligned interface, the clock offset is half the UI. In an 
SDR interface, the UI is equal to the clock period. In a DDR interface, the UI is equal to 
half the clock period. Therefore, in an SDR interface, the clock offset is one half of a 
clock period, and in a DDR interface, the clock offset is one quarter of a clock period.

You can use the following two approaches to compute FPGA-centric output 
constraints:

■ “Minimum Data Valid Constraints”

■ “Maximum Data Invalid Constraints” on page 24

Minimum Data Valid Constraints
You can use the following approaches to derive minimum data valid constraints 
based on the clock offset and skew values:

■ Equations based on setup and hold relationships between the data and output 
clocks, described in “Constraints Derived from Setup and Hold Relationships” on 
page 19. 

■ Equations derived from early and late margins based on the clock offset and skew 
values, described in “Constraints Derived from Early and Late Margins” on 
page 21. 

Equation 3. Clock and Data Relationship Timing

Figure 28. Clock and Data Arrival Time Relation

clock arrival time skew– data arrival time clock arrival time skew+ 

Skew

Data Invalid Window
Data Valid Window

Clock Arrival Time + Skew
Clock Arrival Time
Clock Arrival Time − Skew

Clock

Data
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■ If you use tCO and minimum tCO values to derive output delay constraints for your 
interface, use the approach described in “Constraints Derived from Early and Late 
Margins” on page 21. 

All three approaches are correct and result in equivalent constraints.

Constraints Derived from Setup and Hold Relationships

To calculate constraint values with launch and latch edges, use one set of equations 
that specify a setup relationship, and one set of equations that specify a hold 
relationship.

Setup Relationship—Use a setup check to specify the left-hand side of the clock and 
data relationship shown in Equation 3 on page 18. A setup check verifies that the 
latest data arrival time (data arrival + skew) is earlier than the data required time 
(clock arrival). Equation 4 shows the components of arrival time and Equation 5 
shows the components of required time.

Equation 6 shows the inequality that must be satisfied for positive slack, then shows 
the substitution of arrival and required times from Equation 4 and Equation 5, 
respectively.

In a source-synchronous circuit, the data arrival time must match the clock arrival 
time. Equation 7 shows how you can create an equation that cancels out the data 
arrival and clock arrival time, and shows the value for output maximum delay of 
data.

Example 20 shows the resultant SDC command for an SDR output with the output 
maximum delay value derived from Equation 7.

Equation 4. Arrival Time

Equation 5. Required Time

Equation 6. Inequality for Positive Slack

Equation 7. Output Maximum Delay Calculation

Example 20. Output Maximum Delay Constraint for SDR Interfaces

set_output_delay -max <output maximum delay value> -clock \
[get_clocks output_clock] [get_ports data_out]

arrival time data arrival time skew+=

required time latch launch–  clock arrival time maximum delay of data–+=

arrival time required time
data arrival time skew+ latch launch–  clock arrival time maximum delay of data–+

skew latch launch–  maximum delay of data–
output maximum delay of data latch launch–  skew–=
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A DDR output has a duplicate constraint that applies to the falling clock edge, as 
shown in Example 21.

Hold Relationship—Use a hold check to specify the right-hand side of the clock and 
data relationship shown in Equation 3 on page 18. A hold check verifies that the 
earliest data arrival time (data arrival – skew) is later than the data required time 
(clock arrival). Equation 8 shows the components of arrival time and Equation 9 
shows the components of required time.

Equation 10 shows the inequality that must be satisfied for positive slack, then shows 
the substitution of arrival and required times from Equation 8 and Equation 9, 
respectively.

In a source-synchronous circuit, the data arrival time must match the clock arrival 
time. Equation 11 shows how you can create an equation that cancels out the data 
arrival and clock arrival time, and shows the value for output maximum delay of 
data.

Example 22 shows the resultant SDC command for an SDR output with the output 
maximum delay value derived from Equation 11.

Example 21. Output Maximum Delay Constraints for DDR Interfaces

set_output_delay -max <output maximum delay value> -clock \
[get_clocks output_clock] [get_ports data_out]

set_output_delay -max <output maximum delay value> -clock \
[get_clocks output_clock] -clock_fall [get_ports data_out] 

-add_delay

Equation 8. Arrival Time

Equation 9. Required Time

Equation 10. Inequality for Positive Slack

Equation 11. Output Minimum Delay Calculation

Example 22. Output Minimum Delay Constraint for SDR Interfaces

set_output_delay -min <output minimum delay value> -clock \
[get_clocks output_clock] [get_ports data_out*]

arrival time data arrival time skew–=

required time latch launch–  clock arrival time minimum delay of data–+=

arrival time required time
data arrival time skew– latch launch–  clock arrival time minimum delay of data–+

skew– latch launch–  minimum delay of data–
output minimum delay of data latch launch–  skew+=
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A DDR output has a duplicate constraint that applies to the falling clock edge, as 
shown in Example 23.

Constraints Derived from Early and Late Margins

You can use the clock offset and skew values to determine early and late margins for 
the data to change, thus defining the minimum data valid window. The clock offset is 
the difference between the launch and latch edges. In a center-aligned interface, the 
launch and latch edges are half a UI apart. In an edge-aligned output, the launch and 
latches are at the same time, so the clock offset is zero.

The early margin corresponds to the minimum tCO value and the late margin 
corresponds to the maximum tCO value. Figure 29 shows early and late margins 
indicated on a center-aligned DDR interface timing diagram.

Equation 12 shows how to calculate the output maximum delay value. The late 
margin is equivalent to a tCO value.

Example 23. Output Minimum Delay Constraints for DDR Interfaces

set_output_delay -min <output minimum delay value> -clock \
[get_clocks output_clock] [get_ports data_out*]

set_output_delay -min <output minimum delay value> -clock \
[get_clocks output_clock] -clock_fall [get_ports data_out*] 

-add_delay

Figure 29. Early and Late Margins

Equation 12. Output Maximum Delay Value Derivation

Output Clock

Data

x

Data Clock

Early Margin

Late Margin

Skew

Clock Offset

output maximum delay value unit interval late margin–=
late margin unit interval clock offset output skew+–=

output maximum delay value unit interval unit interval clock offset– output skew+ –=
output maximum delay value clock offset output skew–=
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Equation 13 shows how to calculate the output minimum delay value. The early 
margin is equivalent to a minimum tCO value.

Figure 30 shows the clock values from Equation 12 on page 21 and Equation 13 with 
an edge-aligned SDR output timing diagram. In an edge-aligned interface, the clock 
offset value is zero.

Figure 31 shows the clock values from Equation 12 on page 21 and Equation 13 with a 
center-aligned SDR output timing diagram. In a center-aligned interface, the clock 
offset is half the UI.

Equation 13. Output Minimum Delay Value Derivation

Figure 30. Edge-Aligned SDR Output

Figure 31. Center-Aligned SDR Output

output minimum delay value 0 early margin–=
early margin unit interval clock offset output skew––=

output minimum delay value 0 unit interval clock offset– output skew– –=
output minimum delay value unit interval– clock offset output skew+ +=
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Output Clock

Data

x

Data Clock

Clock Offset

Early Margin

Late Margin

Skew

Output Min Delay Output Max Delay

Unit Interval (Clock Period)



Source-Synchronous Outputs Page 23

© May 2016 Altera Corporation AN 433: Constraining and Analyzing Source-Synchronous Interfaces

Figure 32 shows the clock values from Equation 12 on page 21 and Equation 13 on 
page 22 with an edge-aligned DDR output timing diagram. In an edge-aligned 
interface, the clock offset value is zero.

Figure 33 shows the clock values from Equation 12 on page 21 and Equation 13 on 
page 22 with a center-aligned DDR output timing diagram. In a center-aligned DDR 
interface, the clock offset is half the UI, or one quarter of the clock period.

Figure 32. Edge-Aligned DDR Output

Figure 33. Center-Aligned DDR Output
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Maximum Data Invalid Constraints
Figure 34 shows the data invalid window derived from the positive and negative 
skew values.

Altera recommends constraining the maximum data invalid time instead of the 
minimum data valid time. To constrain the maximum data invalid time, you must set 
up the output minimum delay and output maximum delay constraints. The output 
minimum delay constraint value is the positive skew requirement, and the output 
maximum delay constraint is the negative skew requirement. Depending on the 
operation of your interface, you may have to adjust the constraint values or add 
exceptions to ensure correct timing analysis, but there are no calculations required to 
determine the initial output delay values.

The output minimum delay shown in Figure 34 corresponds to the minimum tCO 
requirement, which is the earliest time that data can change after the clock edge. 
When you constrain the maximum data invalid time, the earliest time that data can 
change after the clock edge is the positive skew time. The output maximum delay 
shown in Figure 34 corresponds to the tCO requirement, which is the latest time that 
data changes after the clock edge. When you constrain the maximum data invalid 
time, the latest time that data changes occur is skew requirement, which is before the 
clock edge. To express that time as occurring after the clock edge, you must use the 
negative slack value.

1 If you use this approach to constrain the maximum data invalid time and you use the 
PrimeTime software, you must modify your output maximum and minimum delay 
values to work around a limitation of the PrimeTime software. Using an output 
maximum delay value that is less than the corresponding output minimum delay 
value results in incorrect timing analysis. The following sections describe constraint 
modifications necessary for each combination of edge capture and alignment. For an 
appropriate workaround, refer to the section that corresponds to the operation of your 
interface.

Figure 34. Data Invalid Window

Skew

Data Invalid Window
Data Valid Window

Clock

Data

Output Minimum DelayOutput Maximum Delay
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FPGA-Centric Output Timing Exceptions
Depending on the operation of your interface, you may have to add exceptions as 
described in the following sections to ensure proper timing analysis. 

The values of launch and latch are the times that the respective clock edges occur for 
setup and hold checks. However, there are several ways in which you can combine 
the output delay constraints with exceptions to constrain different configurations of 
source-synchronous output interfaces.

The following sections describe different alignment and capture edge combinations, 
and show any additional timing exceptions or adjusted constraints that are 
appropriate for each combination. For additional timing exceptions or constraint 
modifications that are necessary for correct operation, refer to the section in the 
following list that corresponds to the operation of your interface:

■ “Same-Edge Capture Edge-Aligned Output”

■ “Opposite-Edge Capture, Edge-Aligned Output” on page 28

■ “Same-Edge Capture Center-Aligned Output” on page 30

■ “Opposite-Edge Capture Center-Aligned Output” on page 34

Same-Edge Capture Edge-Aligned Output
You can use two types of exceptions to change the default analysis so the correct setup 
and hold relationships for same-edge capture are analyzed. You can use the following 
methods to constrain the edge-aligned interface for same-edge capture:

■ “Destination Multicycle Exceptions Method” on page 26

■ “Add One Clock Period” on page 27

Both methods result in the same timing analysis results. Using multicycle exceptions 
is the best representation of the design intent.

When you constrain DDR outputs, you must also use the false path exceptions in 
Example 24, so that the opposite-edge transfers are not analyzed.

Example 24.

set_false_path -setup -rise_from [get_clocks data_clock] -fall_to \
[get_clocks output_clock]

set_false_path -setup -fall_from [get_clocks data_clock] -rise_to \
[get_clocks output_clock]

set_false_path -hold -rise_from [get_clocks data_clock] -fall_to \
[get_clocks output_clock]

set_false_path -hold -fall_from [get_clocks data_clock] -rise_to \
[get_clocks output_clock]
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Destination Multicycle Exceptions Method

Use two destination setup multicycle exceptions with a value of zero, and two 
destination hold multicycle exceptions with a value of –1, as shown in Example 25.

Using destination setup multicycle exceptions adjusts the setup latch edge to one 
edge earlier (zero cycles after the launch edge) so data transfer between the clocks 
happens in zero cycles, as shown in Figure 35. Red arrows indicate setup 
relationships, and blue arrows indicate hold relationships. Using a destination setup 
multicycle exception of 0 also causes the default hold analysis edge to move one edge 
earlier (one cycle before the launch edge). 

However, hold analysis must also occur for the same launch/latch edges as the setup 
analysis occurred. Adjusting the edge used for hold analysis requires a destination 
hold multicycle exception with a value of –1. The value of –1 moves the latch edge 
used for hold analysis one cycle later, as shown in Figure 36. Red arrows indicate 
setup relationships, and blue arrows indicate hold relationships.

Example 25.

set_multicycle_path -setup -end 0 -rise_from [get_clocks \
data_clock] -rise_to [get_clocks output_clock]

set_multicycle_path -setup -end 0 -fall_from [get_clocks \
data_clock] -fall_to [get_clocks output_clock]

set_multicycle_path -hold -end -1 -rise_from [get_clocks \
data_clock] -rise_to [get_clocks output_clock]

set_multicycle_path -hold -end -1 -fall_from [get_clocks \
data_clock] -fall_to [get_clocks output_clock]

Figure 35. Adding a Destination Multicycle Setup of Zero

Figure 36. Destination Multicycle Setup of –1
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1 Using the destination multicycle exception method is not compatible with the 
PrimeTime software, because the output maximum delay value is less than the output 
minimum delay value.

Add One Clock Period

Figure 37 shows the default setup and hold relationships that are analyzed for 
same-edge capture edge-aligned outputs. Red arrows indicate setup relationships, 
and blue arrows indicate hold relationships.

Using the FPGA-centric approach to constrain the interface requires you to make 
adjustments to cause the latch edge to be the same as the launch edge for setup and 
hold analysis.

Figure 38 shows the setup and hold relationships that must be analyzed for SDR 
same-edge capture. Red arrows indicate setup relationships, and blue arrows indicate 
hold relationships.

Figure 39 shows the setup and hold relationships that must be analyzed for DDR 
same-edge capture. Red arrows indicate setup relationships, and blue arrows indicate 
hold relationships.

In a same-edge capture configuration, the default setup relationship is between a 
rising edge and the rising edge that follows it, or a falling edge and the falling edge 
that follows it. The setup relationship must be between edges that occur at the same 
time. To cancel out the effect of the one-period-long setup time, you must add one 
period to the output maximum delay, as shown in Equation 14.

Figure 37. Default Setup and Hold Relationships

Figure 38. Desired Setup and Hold for SDR Same-Edge Capture

Figure 39. Desired Setup and Hold for DDR Same-Edge Capture

Data Clock

Output Clock

Data Clock

Output Clock

Data Clock

Output Clock



Page 28 Source-Synchronous Outputs

AN 433: Constraining and Analyzing Source-Synchronous Interfaces © May 2016 Altera Corporation

Example 26 shows the modified constraints.

Adding one clock period to the output maximum delay value does not actually adjust 
the latch edge, but it shifts the data required time one cycle earlier in time, as shown in 
Figure 40.

1 Adding one clock period to the output maximum delay values is compatible with the 
PrimeTime software.

The default hold relationship between the same edges is correct, with the launch edge 
occurring at the same time as the latch edge. Therefore, the latch and launch terms 
cancel out of Equation 15, resulting in an output minimum delay value, which is 
unchanged from its original value.

Opposite-Edge Capture, Edge-Aligned Output
Figure 41 shows the default setup and hold relationships that are analyzed for 
opposite-edge capture edge-aligned outputs. Red arrows indicate setup relationships, 
and blue arrows indicate hold relationships.

Equation 14.

output maximum delay latch launch–  period skew–=

Example 26.

set_output_delay -max <output maximum delay value + (latch  –launch)> \
-clock [get_clocks output_clock] [get_ports data_out]

set_output_delay -max <output maximum delay value + (latch – launch)> \
-clock [get_clocks output_clock] -clock_fall [get_ports data_out]

Figure 40. Add Clock Period to Output Maximum Delay
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Equation 15.

Figure 41. Opposite-Edge Capture, Edge-Aligned Output

output minimum delay latch launch–  skew–=
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Using the FPGA-centric approach to constrain the interface requires you to make 
adjustments to cause the latch edge time to be the same as the launch edge time for 
setup and hold analysis. Figure 42 shows the setup and hold relationships that must 
be analyzed for opposite-edge capture. Red arrows indicate setup relationships, and 
blue arrows indicate hold relationships.

In an opposite-edge capture configuration, the default setup relationship is between a 
launch edge and the next opposite edge that follows it. The launch and latch edges are 
half a period apart. The setup relationship must be between edges that occur at the 
same time. To cancel out the effect of the half-period-long setup time, you must add 
half a period to the output maximum delay, as shown in Equation 16.

The hold relationship is between a launch edge and the latch edge that precedes it, so 
the launch and latch edges are half a period apart. The hold relationship must be 
between edges that occur at the same time. To cancel out the effect of the 
half-period-long hold time, you must subtract half a period from the output minimum 
delay, as shown in Equation 17. Subtract the half period because the launch time is 
later than the latch time, so (latch – launch) is negative.

Do not use any multicycle or delay exceptions for opposite-edge transfers. The only 
exceptions necessary for correct timing analysis are false path exceptions, shown in 
Example 27. 

Figure 42. Desired Setup and Hold for Opposite-Edge Capture

Equation 16.

Equation 17.

Data Clock

Output Clock

output maximum delay latch launch–  skew–=

output maximum delay period
2

--------------- 
  skew–=

output minimum delay latch launch–  skew+=

output minimum delay period
2

--------------- 
  skew+=

Example 27.

set_false_path -setup -rise_from [get_clocks data_clock] -rise_to \
[get_clocks output_clock]

set_false_path -setup -fall_from [get_clocks data_clock] -fall_to \
[get_clocks output_clock]

set_false_path -hold -rise_from [get_clocks data_clock] -rise_to \
[get_clocks output_clock]

set_false_path -hold -fall_from [get_clocks data_clock] -fall_to \
[get_clocks output_clock]
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If you use a small positive phase shift to align the clock and data outputs better, the 
false path exceptions in Example 27 are still sufficient. A small positive phase shift 
results in a small setup relationship, shown in Figure 43. Red arrows indicate setup 
relationships. False path exceptions are shown with dashed arrows, and the false path 
exceptions cover rise-rise and fall-fall setup and hold paths. 

If you use a small negative phase shift to better align the clock and data outputs, the 
false path exceptions in Example 27 are still sufficient. The default latch edge is the 
next clock edge after the launch edge, and it is still the opposite edge, as shown in 
Figure 44. Red arrows indicate setup relationships.

Same-Edge Capture Center-Aligned Output
Figure 45 shows the default setup and hold relationships that are analyzed in a 
same-edge capture, center-aligned output. Red arrows indicate setup relationships, 
and blue arrows indicate hold relationships.

You can use two types of exceptions to change the default analysis so the correct setup 
and hold relationships for same-edge capture are analyzed. Both methods have the 
effect of causing the latch edge to align with the latch edge for setup and hold 
analysis. You can use the following methods to constrain the center-aligned interface 
for same-edge capture:

■ “Maximum and Minimum Delay Exceptions”

■ “Add Partial Clock Period” on page 33

Both methods result in the same timing analysis results, but the maximum and 
minimum delay exceptions method is not compatible with the PrimeTime software.

Figure 43. Small Positive Phase Shift with False Path Exceptions

Figure 44. Small Negative Phase Shift, Opposite-Edge Capture

Figure 45. Default Setup and Hold for Center-Aligned Output
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Maximum and Minimum Delay Exceptions

Using maximum and minimum delay exceptions between the data clock and the 
output clock allows you to directly control the timing relationship between the two.

Figure 46 shows the points for the timing relationship specification with a red curved 
arrow. 

The nominal value for the maximum and minimum delay exceptions between the 
data clock and output clock is zero. Example 28 shows sample maximum and 
minimum delay exceptions that correspond to Figure 46. There are situations when it 
is appropriate to use non-zero values, described below.

Using the maximum and minimum delay exceptions of zero affects only timing 
analysis, not the actual circuit operation. The output clock continues to be shifted by 
the amount implemented in the PLL that drives it. Setting maximum and minimum 
delay values of 0 causes the timing analyzer to override any output clock phase shift 
when it performs timing analysis. Effectively, the maximum and minimum delay 
values of zero cause the interface to be analyzed as if it were an edge-aligned 
interface. When the interface is edge-aligned, you can use the positive and negative 
skew values for the output minimum delay and output maximum delay values, as 
described in “Maximum Data Invalid Constraints” on page 24.

1 Do not use this method if you also use the PrimeTime software to perform timing 
analysis for your design. If the value for an output maximum delay is more negative 
than the value for an output minimum delay, the PrimeTime software uses the more 
negative value for the output maximum and output minimum delays. The TimeQuest 
timing analyzer uses both output maximum and output minimum delay values, 
regardless of their positive or negative relationship.

Figure 46. Maximum and Minimum Delay Exceptions
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Example 28.

set_max_delay -from [get_clocks data_clock] -to [get_clocks output_clock] 0 
set_min_delay -from [get_clocks data_clock] -to [get_clocks output_clock] 0 
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Example 29 shows the output delay constraints that use the positive and negative 
skew values.

Use the maximum and minimum delay exceptions to specify any deviation from the 
ideal clock shift you intend. If you shift the PLL slightly to center the data valid 
window, update your maximum and minimum delay exceptions to reflect the 
difference between your ideal phase shift and your actual phase shift.

For example, a center-aligned DDR output with a 5 ns UI has an ideal PLL phase shift 
of 90° (2.5 ns). If you shift the clock output by 10° to center the data valid window, 
change the maximum and minimum delay exceptions to 138 ps to reflect the 10° shift. 
The 10° phase shift corresponds to 138 ps because the shift amount is 5 ns x 10°  360°

The value you use for the maximum and minimum delay exceptions must include the 
skew between the clocks. In those cases in which skew is negligible, such as when you 
use ALTDDIO_OUT megafunctions for both the data and clock outputs, you can use 
zero for the skew. You must not use zero for the skew when a PLL output drives 
directly off chip, for example.

If there are data paths between the source and destination clocks in addition to the 
source-synchronous output registers, as shown in Figure 47, change the value of the 
-from option in the delay exceptions shown in Example 28 on page 31. Use a 
collection of registers with a wildcard that restricts the collection to the 
source-synchronous output registers driven by the source clock. For example, if your 
source-synchronous output registers are instantiated in a module named 
ss_data_if, and you use the ALTDDIO_OUT megafunction, use the following 
collection:

[get_registers *ss_data_if*altddio_out_component*] 

Example 29.

set_output_delay -max <negative skew> -clock \
 [get_clocks output_clock] [get_ports data_out]

set_output_delay -max <negative skew> -clock \
[get_clocks output_clock] -clock_fall [get_ports data_out] -add_delay

set_output_delay -min <positive skew> -clock \
[get_clocks output_clock] [get_ports data_out*]

set_output_delay -min <positive skew> -clock \
[get_clocks output_clock] -clock_fall [get_ports data_out*] -add_delay

Figure 47. Extra Data Paths
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Add Partial Clock Period

In a same-edge capture configuration, the setup and hold relationships must be 
between the same launch and latch edges, and in a center-aligned configuration, the 
latch clock is shifted by a half-UI. In an SDR interface, center alignment requires a 
clock shift of half a period, and in a DDR interface, center alignment requires a clock 
shift of a quarter period. 

Figure 48 shows the launch and latch waveforms for a center-aligned output, and 
identifies the launch and latch edges used for setup and hold analysis. Red arrows 
indicate setup relationships, and blue arrows indicate hold relationships.

Equation 18 shows how to calculate the value for the output maximum delay 
constraint.

This equation is derived from Equation 4 on page 19, Equation 5 on page 19, 
Equation 6 on page 19, and Equation 7 on page 19. Figure 48 shows that the latch edge 
for setup analysis occurs one quarter period after the launch edge. Therefore, the 
value for the output maximum delay is (1/4)period – skew.

Equation 19 shows how to calculate the value for the output minimum delay 
constraint.

Equation 19 is derived from Equation 8 on page 20, Equation 9 on page 20, 
Equation 10 on page 20, and Equation 11 on page 20. Figure 48 shows that the latch 
edge for hold analysis occurs three quarters of a period before the launch edge. 
Therefore, the value for the output minimum delay is (–3/4)period + skew.

Example 30 shows the false path exceptions that are necessary for correct timing 
analysis.

Figure 48. Launch and Latch Edges for Center-Aligned Output

Equation 18.

Equation 19.

Shift Amount

Data Clock

Output Clock

output maximum delay latch launch–  skew–=
output maximum delay shift skew–=

output minimum delay latch launch–  skew+=
output minimum delay shift– skew+=
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Even if you use a small positive or negative phase shift to align the clock and data 
outputs better, do not use any other exceptions or constraints. Figure 49 shows small 
positive and negative phase shifts for a same-edge capture, center-aligned 
source-synchronous output. The latch edge is always the same edge as the launch 
edge, but with a shift. Red arrows indicate setup relationships.

Opposite-Edge Capture Center-Aligned Output
Figure 50 shows the setup and hold relationships that must be analyzed for 
opposite-edge, center-aligned capture. Red arrows indicate setup relationships, and 
blue arrows indicate hold relationships.

In an opposite-edge capture configuration, the setup and hold relationships are 
between opposite launch and latch edges, and in a center-aligned interface, the latch 
clock is shifted. 

Figure 51 shows the launch and latch waveforms for an opposite-edge capture 
center-aligned output, and identifies the launch and latch edges used for setup and 
hold analysis. Red arrows indicate setup relationships, and blue arrows indicate hold 
relationships.

Example 30.

set_false_path -setup -rise_from [get_clocks data_clock] -fall_to \
[get_clocks output_clock]

set_false_path -setup -fall_from [get_clocks data_clock] -rise_to \
[get_clocks output_clock]

set_false_path -hold -rise_from [get_clocks data_clock] -fall_to \
[get_clocks output_clock]

set_false_path -hold -fall_from [get_clocks data_clock] -rise_to \
[get_clocks output_clock]

Figure 49. Small Positive or Negative Phase Shifts, Same-Edge Capture

Figure 50. Desired Setup and Hold for Center-Aligned Output
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Equation 20 shows how to calculate the value for the output maximum delay 
constraint. The equation is derived from Equation 4 on page 19, Equation 5 on 
page 19, Equation 6 on page 19, and Equation 7 on page 19 in “Constraints Derived 
from Setup and Hold Relationships” on page 19.

Figure 51 shows that the latch edge for setup analysis occurs three quarters of a period 
after the launch edge. Therefore, the value for the output maximum delay is 
(3/4)period – skew.

Equation 21 shows how to calculate the value for the output minimum delay 
constraint. The equation is derived from Equation 8 on page 20, Equation 9 on 
page 20, Equation 10 on page 20, and Equation 11 on page 20 in “Constraints Derived 
from Setup and Hold Relationships” on page 19.

Figure 51 shows that the latch edge for hold analysis occurs one quarter of a period 
before the launch edge. Therefore, the value for the output minimum delay is 
(–1/4)period + skew.

You must also add false path exceptions on same-edge transfers shown in Example 31 
on page 35. The paths that are cut are for same-edge capture. Setting these false paths 
ensures that timing analysis is performed with respect to opposite-edge transfers.

Figure 51. Launch and Latch Edges for Center-Aligned Output

Equation 20.

Equation 21.

Shift Amount

Data Clock

Output Clock

output maximum delay latch launch–  skew–=
output maximum delay shift skew–=

output minimum delay latch launch–  skew+=
output minimum delay shift– skew+=

Example 31.

set_false_path -setup -rise_from [get_clocks data_clock] -rise_to \
[get_clocks output_clock]

set_false_path -setup -fall_from [get_clocks data_clock] -fall_to \
[get_clocks output_clock]

set_false_path -hold -rise_from [get_clocks data_clock] -rise_to \
[get_clocks output_clock]

set_false_path -hold -fall_from [get_clocks data_clock] -fall_to \
[get_clocks output_clock]
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Timing Analysis and Timing Closure
Figure 52 shows a simple source-synchronous DDR output design example used to 
illustrate timing analysis concepts.

To report timing for the output, use the report_timing command with 
-from_clock and -to_clock options. Use the name of the clock that drives the 
data output registers for the -from_clock option, and the name of the generated 
clock on the output clock port for the -to_clock option. For example, use the 
following two commands to report setup and hold timing for the circuit described 
previously:

■ report_timing -from_clock data_clock -to_clock output_clock \ 
-setup

■ report_timing -from_clock data_clock -to_clock output_clock \ 
-hold

You must perform timing analysis at all timing corners to ensure the interface meets 
its timing requirements.

Timing Closure
The slack values reported by each report_timing command indicate by how much 
the data meets its timing requirement. A negative value indicates that the constraint is 
not satisfied.

To achieve timing closure, the setup and hold slack values must be positive, and the 
setup and hold slack values must be balanced, or equal. The timing margin of the 
interface is equal to the lesser of the slack values. The best margin occurs when the 
setup slack equals the hold slack. It is not possible to balance the setup and hold slack 
values perfectly over the entire operating range of the FPGA. You must adjust the 
interface timing until the slack values are similar. Acceptable values depend on the 
operation of your interface. High-speed interfaces have small data valid windows; 
therefore, it is important for slack values to be very close. Low-speed interfaces can 
tolerate larger slack differences because of the larger data valid windows.

If the setup and hold slack values are not balanced, you must adjust parts of your 
interface. If you use separate clocks for the data output and clock output, it is 
straight-forward to shift one of the clocks (typically the output clock) to balance setup 
and hold slack values.

Use the steps shown in Equation 22 to compute the required phase shift.

Figure 52. Simple Source-Synchronous Output
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When you shift a clock, you may also have to modify output delay constraints or 
timing exceptions if the latch clock edge moves past the launch clock edge. For 
example, if you add a positive phase shift to the output clock in a same-edge capture, 
edge-aligned circuit, you may have to modify the exceptions to use exceptions for 
center-aligned circuits.

If you use a common clock for the data output and clock output, you must take other 
steps. If you want to adjust the slack values by small amounts, you can adjust delay 
chain settings. Delay chains provide small and variable delays in the output path from 
a register to a pin. 

f For information about delay chains, refer to the appropriate handbook for the device 
family you are using. For information about setting delay chain values, refer to the 
Quartus II Help.

If you want to adjust the slack values more than you can with delay chains, you must 
change the location of elements of your interface, such as the data output registers.

Example
The following example is based on the output interface in Figure 52 on page 36. The 
clock sourced by the device has a 10 ns period and is edge-aligned with the data. 
There is a +/–100 ps skew requirement for the data. The output is constrained as 
shown in Example 32.

Equation 22.

time shift hold slack setup slack– 
2

-------------------------------------------------------------=

phase shift 360 time shift
unit interval
---------------------------=
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Use the commands in Example 33 to report timing. Report timing uses both slow and 
fast corner delay models.

Example 32. SDC Constraints for Same-Edge Capture Edge-Aligned Output Example

# Clock constraints
create_clock -name input_clock -period 10.000 [get_ports clk_in]
create_generated_clock -name data_clock -source [get_pins PLL|inclk[0]] \

[get_pins PLL|clk[0]]
create_generated_clock -name pll_clock -source [get_pins PLL|inclk[0]] \

[get_pins PLL|clk[1]]
create_generated_clock -name output_clock -source [get_pins PLL|clk[1]] \

[get_ports clk_out]

# Output delay constraints of +/- skew
set_output_delay -clock output_clock [get_ports data_out] -max -0.1
set_output_delay -clock output_clock [get_ports data_out] -min 0.1 \

-add_delay
set_output_delay -clock output_clock -clock_fall [get_ports data_out] \

-max -0.1-add_delay
set_output_delay -clock output_clock -clock_fall [get_ports data_out] \

-min 0.1 -add_delay

# Destination multicycle exceptions
set_multicycle_path -setup -end 0 -rise_from [get_clocks data_clock] \

-rise_to [get_clocks output_clock]
set_multicycle_path -setup -end 0 -fall_from [get_clocks data_clock] \

-fall_to [get_clocks output_clock]
set_multicycle_path -hold -end -1 -rise_from [get_clocks data_clock] \

-rise_to [get_clocks output_clock]
set_multicycle_path -hold -end -1 -fall_from [get_clocks data_clock] \

-fall_to [get_clocks output_clock]

# False path exceptions for opposite-edge transfers
set_false_path -setup -rise_from [get_clocks data_clock] -fall_to \

[get_clocks output_clock]
set_false_path -setup -fall_from [get_clocks data_clock] -rise_to \

[get_clocks output_clock]
set_false_path -hold -rise_from [get_clocks data_clock] -fall_to \

[get_clocks output_clock]
set_false_path -hold -fall_from [get_clocks data_clock] -rise_to \

[get_clocks output_clock]

Example 33.

report_timing -from_clock data_clock -to_clock output_clock -setup
report_timing -from_clock data_clock -to_clock output_clock -hold
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Table 1 shows the timing analysis results.

The worst case setup slack is –2.107 ns, and the worst case hold slack is 1.041 ns. The 
time shift is (1.041 ns – 2.107 ns) ÷ 2, which equals 1.574 ns. A time shift of 1.574 ns 
equals a phase shift of 360° × 1.574 ns ÷ 10 ns, or 56°

Change the phase of the PLL output that generates the output clock to 56 and update 
the SDC generated clock as shown in Example 34.

The setup and hold slack values are now balanced, and the interface operates with the 
largest amount of margin.

Source-Synchronous Inputs
Source-synchronous inputs require the following types of constraints and exceptions:

■ Clock constraints—Create clock constraints as described in “Input Clock 
Constraints” on page 40

■ Input delay constraints—Create input delay constraints with one of the following 
methods:

■ “System-Centric Input Delay Constraints” on page 44

■ “FPGA-Centric Input Delay Constraints” on page 47

■ Timing exceptions—Create timing exceptions as described in “Input Timing 
Exceptions” on page 50

Input Clocks
The input clock for the source-synchronous interface can clock input capture registers 
directly, or it can drive a PLL that clocks the input capture registers. There are usually 
larger timing margins for interfaces that use a PLL to clock the input capture registers 
than there are for interfaces that use the input clock directly to clock the capture 
registers. This is especially true for high-speed DDR interfaces. In SDR interfaces, the 
timing margins are often large enough that you can directly connect the input clock to 
the input capture registers. Direct clocking has the advantage of eliminating the PLL 
as a source of clock uncertainty. However, the PLL has the advantage of providing 
clock compensation over power, voltage, and temperature (PVT). At high interface 
speeds, the benefit of using a PLL outweighs the associated clock uncertainty.

Table 1. Slack Values

Timing Corner Setup Slack Hold Slack

Slow –2.107 ns 2.307 ns

Fast –0.841 ns 1.041 ns

Example 34.

create_generated_clock -name pll_clock -phase 56 \
-source [get_pins PLL|inclk[0]] [get_pins PLL|clk[1]]
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If you use a PLL for your input clock, you should configure it in source-synchronous 
compensation mode. In source-synchronous compensation mode, the clock and data 
relationship at the input capture registers (in an I/O element, or IOE) is identical to 
the relationship at the FPGA device inputs. The PLL maintains the same phase 
relationship. This mode simplifies the constraint and adjustment process for timing 
closure, because you do not have to calculate any PLL phase shift to meet input 
timing requirements.

You can configure the PLL for other modes of operation, such as normal mode, but 
you might have to adjust the phase shift to meet timing. Different PLL modes adjust 
the clock to compensate for different delays in the FPGA. A phase shift is required if 
the clock and data relationship at the input capture registers do not meet timing 
because the PLL is compensating for a different delay.

Whether you use a direct clock connection or clock through a PLL depends on the 
type of interface and timing requirements.

Use a PLL on the input clock for the following inputs:

■ Edge-aligned SDR or DDR inputs (create phase shift to latch data in the middle of 
the data valid window)

■ High-speed inputs

■ Precise adjustment of clock and data relationship (fine tuning phase adjustment)

Altera does not recommend using a PLL on the input clock for the following inputs:

■ Center-aligned SDR or DDR inputs

■ Low-speed inputs

Input Clock Constraints
The source-synchronous interface is a register-to-register transfer between registers in 
separate devices, and the input clock is generated by the sourcing device. You must 
create a clock on the input clock port of your interface that describes the 
characteristics of the source clock, such as its period and phase shift. For example, if 
your sourcing device sends DDR data that is center-aligned (a clock phase of 90°), 
create a clock on the input clock port of your interface with a 90° phase shift with the 
-waveform option.

Virtual Clocks
You should create a virtual clock to represent the clock that clocks the data output 
registers in the source device. Then, use the virtual clock as the reference clock for 
input delay constraints. Create the virtual clock with the same period and phase shift 
as the real clock in the source device. If that clock has any phase shift, specify the 
rising and falling edges that correspond to the phase shift with the -waveform 
option.

Figure 53 shows the input and virtual clocks for a source-synchronous interface.
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It is not necessary to use a virtual clock to constrain the input delays. You can create 
input delay constraints relative to the input clock instead of the virtual clock, but 
using a virtual clock makes the constraining of the interface easier and more accurate. 
A virtual clock makes it easy to constrain inputs with the skew-based FPGA-centric 
approach. You can use the positive and negative skew requirement values for the 
input maximum and minimum delay constraints with no other calculations. Even if 
the source or destination clock is shifted, the input maximum and minimum delay 
values do not change. Refer to “Maximum Data Skew” on page 49 for more details.

You can apply clock uncertainty to the virtual clock that is independent of the 
uncertainty you apply to the clock feeding the FPGA. For more details, refer to “Clock 
Uncertainty”.

Generated Clocks
For any circuit that includes a PLL, you must create generated clocks on the PLL 
outputs. Using the derive_pll_clocks command in your .sdc creates all the 
generated clocks automatically and keeps generated clock characteristics (such as 
period, phase shift, and multiplication and division factors) synchronized with your 
PLL settings. It also names the generated clocks according to the PLL output and 
hierarchy name.

Instead of using the derive_pll_clocks command, you can use individual 
create_generated_clock commands to specify each PLL output clock separately. 
Creating generated clocks individually gives you flexibility in naming the clocks, but 
you must remember to manually update the clock definitions in your .sdc when you 
change PLL settings. 

Clock Uncertainty
You should use the set_clock_uncertainty constraint to specify clock 
uncertainty for each clock in your input circuit. Use the clock uncertainty constraint to 
account for jitter, PLL phase shift error, and duty cycle distortion.

When you use a virtual clock as the reference clock for the input delay constraints, 
you can specify clock uncertainty for the I/O independently of the core clock. If your 
input clock is the reference clock for the input delay constraints, I/O clock uncertainty 
can affect the core clock uncertainty if the I/O clock is used for I/O and core transfers. 

Figure 54 shows a case where clk_in feeds I/O and core registers. Applying clock 
uncertainty to clk_in affects I/O and core timing.

Figure 53. Input Clocking with a Virtual Clock
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Sample Input Clock Circuits and Constraints
When clock and data arrive at the FPGA edge-aligned, it is common to use a PLL to 
shift the clock used to latch data, as shown in Figure 55.

In this case, do not specify a phase adjustment on the input clock, because clock and 
data are edge-aligned. Specify the PLL phase adjustment on the generated clock 
applied to the PLL output. Example 35 shows SDC constraints for Figure 55.

When the clock and data signals arrive at the FPGA center-aligned, specify that clock 
phase adjustment on the input clock with the -waveform option, as shown in 
Example 36. If the clock drives input registers through a PLL, specify any phase shift 
applied by the PLL with the -phase option for the generated PLL clock.

Figure 54. Clock Jitter Example

Figure 55. Edge-Aligned Input Clock
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Example 35.

create_clock -name virtual_clock -period 10.000
create_clock -name input_clock -period 10.000 [get_ports clock_in]
create_generated_clock -name plus_90_degrees -source [get_pins \

PLL|inclk[0]] -phase 90

Example 36.

create_clock -name virtual_clock -period 10.000
create_clock -name input_clock -period 10.000 [get_ports clock_in] -waveform \

{ 2.5 7.5 }
create_generated_clock -name plus_0_degrees -source \

[get_pins PLL|inclk[0]]
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Figure 56, Figure 57, and Figure 58 show various input clock configurations followed 
by the corresponding SDC constraints.

Figure 56. Direct Clocking with Center-Aligned Data
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Example 37.

create_clock -name virtual_source -period 10.000
create_clock -name input_clock -period 10.000 -waveform { 2.5 7.5 } \

[get_ports clk_in]

Figure 57. PLL Shifted Clocking with Edge-Aligned Data
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Example 38.

create_clock -name virtual_source -period 10.000
create_clock -name input_clock -period 10.000 [get_ports clk_in]
create_generated_clock -name shifted_clock -source \

[get_pins PLL|inclk[0]] -phase 90 [get_pins PLL|clk[0]]

Figure 58. PLL Clocking with Center-Aligned Data
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System-Centric Input Delay Constraints
With the system-centric constraint approach, the input delay value includes board 
delays on the clock and data traces, and clock-to-out times, as shown in Figure 59.

If the external device tCO specification is relative to the output clock, as shown in 
Figure 60, use the specified tCO and tCO min values directly to calculate input 
maximum and minimum delay values.

If the external device tCO specification is relative to the input clock, as shown in 
Figure 61, use (tCODATA – tCOminCLOCK) for the tCO value, and 
(tCOminDATA – tCOCLOCK) for the tCO min value, to calculate the input maximum 
and minimum delay values.

Example 39.

create_clock -name virtual_source -period 10.000
create_clock -name input_clock -period 10.000 -waveform { 2.5 7.5 } \

[get_ports clk_in]
create_generated_clock -name internal_clock -source \

get_pins PLL|inclk[0]] [get_pins PLL|clk[0]]

Figure 59. System-Centric Input Delay 

Figure 60. tco Relative to Output Clock
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tCO and tCO min Method

When the external device specification includes tCO and tC O  min values, use 
Equation 23 to calculate the input maximum delay value. The input maximum delay 
value specifies an upper bound for the input delay because it uses the longest data 
path and the shortest clock path.

Write the input maximum delay SDC constraint as shown in Example 40 with the 
input maximum delay value from Equation 23. This example is suitable for an SDR 
input.

A DDR input has a duplicate constraint that applies to the falling clock edge, shown 
in Example 41.

Equation 24 shows the equation to calculate the input minimum delay value. The 
input minimum delay value specifies a lower bound for the input delay because it 
uses the shortest data path and the longest clock path.

Figure 61. tco Relative to Input Clock
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input maximum delay value maximum trace delay for data tCO of external device
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Example 40.

set_input_delay -max <input maximum delay value> -clock \
[get_clocks virtual_clock] [get_ports data_in]

Example 41.

set_input_delay -max <input maximum delay value> -clock \
[get_clocks virtual_clock] [get_ports data_in]

set_input_delay -max <input maximum delay value> -clock \
[get_clocks virtual_clock] -clock_fall [get_ports data_in] -add_delay

Equation 24.

input minimum delay value min trace delay for data tCO min of external device
max trace delay for clock–

+=
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Write the input minimum delay SDC constraint as shown in Example 42 with the 
input minimum delay value from Equation 24 on page 45. This example is suitable for 
an SDR input.

A DDR input has a duplicate constraint that applies to the falling clock edge, shown 
in Example 43.

Setup and Hold Method

Some source-synchronous input interfaces may connect to devices that specify setup 
and hold time parameters for the data output. The setup and hold parameters specify 
the setup and hold times for the data output with respect to the clock output. In this 
case, use the following equations to calculate the maximum input delay value. The 
input maximum delay value specifies an upper bound for the input delay because it 
uses the longest data path and the shortest clock path.

Write the SDC constraint as shown in Example 44 with the input maximum delay 
value from Equation 25.

A DDR input has a duplicate constraint that applies to the falling clock edge, shown 
in Example 45.

Equation 26 shows the equation to calculate the input minimum delay value. The 
input minimum delay value specifies a lower bound for the input delay because it 
uses the shortest data path and the longest clock path.

Example 42.

set_input_delay -min <input minimum delay value> -clock \
[get_clocks virtual_clock] [get_ports data_in]

Example 43.

set_input_delay -min <input minimum delay value> -clock \
[get_clocks virtual_clock] [get_ports data_in]

set_input_delay -min <input minimum delay value> -clock \
[get_clocks virtual_clock] -clock_fall [get_ports data_in] -add_delay

Equation 25.

Example 44.

set_input_delay -max <input maximum delay value> -clock \
[get_clocks virtual_clock] [get_ports data_in]

Example 45.

set_input_delay -max <input maximum delay value> -clock \
[get_clocks virtual_clock] [get_ports data_in]

set_input_delay -max <input maximum delay value> -clock \
[get_clocks virtual_clock] -clock_fall [get_ports data_in]

input maximum delay value maximum trace delay for data unit interval+=
tSU of external device– minimum trace delay for clock–
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Write the SDC constraint as shown in Example 46 with the input minimum delay 
value from Equation 26.

A DDR input has a duplicate constraint that applies to the falling clock edge, shown 
in Example 47.

FPGA-Centric Input Delay Constraints
Source-synchronous input requirements are specified at the FPGA boundary in the 
following two ways:

■ “Setup and Hold”

■ “Maximum Data Skew” on page 49

Setup and Hold

When your FPGA source-synchronous input interface has setup and hold time 
requirements, calculate the equivalent maximum and minimum input delays based 
on the setup and hold requirements.

Figure 62 shows a timing waveform with setup and hold requirements, and the 
corresponding input maximum and minimum delays. To convert a setup time 
requirement to an input maximum delay constraint, subtract the setup time from the 
UI. In a DDR interface, the UI value is half the clock period, because data is 
transferred on both clock edges. A hold time requirement value is equivalent to an 
input minimum delay value.

Equation 26.

Example 46.

set_input_delay -min <input minimum delay value> -clock \
[get_clocks virtual_clock] [get_ports data_in]

Example 47.

set_input_delay -min <input minimum delay value> -clock \
[get_clocks virtual_clock] [get_ports data_in]

set_input_delay -min <input minimum delay value> -clock \
[get_clocks virtual_clock] -clock_fall [get_ports data_in]

input minimum delay valuei minimum trace delay for data tH+  of external device
maximum trace delay for clock–

=
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Example 48 shows the input delay constraints.

If you derive input delay constraints from setup and hold requirements using a 
virtual clock as the input delay clock reference and the input data is not edge-aligned, 
you must modify the constraint values to compensate for the clock shift.

Figure 63 shows the need for compensation.

The virtual clock has no phase shift, the input clock has a 90° phase shift, and the 
input data is center-aligned with respect to the input clock (with equal tSU and tH 
requirements). 

Figure 62. Setup and Hold Requirements with Input Delays
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Example 48.

set_input_delay -max [expr <unit interval> - <setup time>] -clock \
[get_clocks input_clock] -add_delay [get_ports data_in]

set_input_delay -min <hold time> -clock [get_clocks input_clock] \
-add_delay [get_ports data_in]

Figure 63. Compensating for Center Alignment
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However, when you make input delay constraints with respect to the virtual clock, 
the setup and hold relationships are not the same as they are with respect to the input 
clock. The input data is edge-aligned with respect to the virtual clock. The hold 
requirement with respect to the virtual clock must decrease by the amount of the shift 
(period ÷ 4 for a center-aligned DDR interface). The setup requirement with respect to 
the virtual clock must increase by the amount of the shift (period ÷ 4 for a 
center-aligned DDR interface). The input maximum and minimum delay values both 
increase by the amount of the shift (period ÷ 4 for a center-aligned DDR interface).

Maximum Data Skew

When you specify the maximum data skew an input can tolerate, you must constrain 
the minimum data valid window.

Figure 64 has clock and data waveforms that show how the input maximum and 
minimum delay values are derived from skew requirements.

The input maximum delay is equal to the skew requirement, because input maximum 
delay is equivalent to the UI minus the setup value. The input minimum delay is 
equal to the negative skew requirement value because input minimum delay is 
equivalent to hold. The hold value is negative because data can change (become 
invalid) before the reference clock edge.

Using a virtual clock as the clock reference for input delay constraints makes 
FPGA-centric constraints easy to apply. As Figure 64 shows, the input maximum 
delay value is the positive value of the skew requirement, and the input minimum 
delay value is the negative value of the skew requirement.

Example 49 shows the input delay constraints for a DDR interface, using the positive 
and negative skew values.

Figure 64. Clock and Data Waveforms, Input Max and Min Delay Values

Clock

Data

Reference Clock Edge

Hold

Input Min Delay
Skew

Input Max Delay

Skew

Period

Setup



Page 50 Source-Synchronous Inputs

AN 433: Constraining and Analyzing Source-Synchronous Interfaces © May 2016 Altera Corporation

Even if the virtual clock (the source clock driving the output registers in the source 
device) or the input clock (the clock driving the destination register in the FPGA) have 
any phase shifts, the input delay values are still the positive and negative skew 
values.

Input Timing Exceptions
The following sections describe different alignment and capture edge combinations, 
and show any additional timing exceptions or adjusted constraints that are 
appropriate for each combination. For additional timing exceptions or constraint 
modifications that are necessary for correct operation, refer to the section that 
corresponds to the operation of your interface:

■ “Same-Edge Capture Edge-Aligned Input”

■ “Same-Edge Capture Center-Aligned Input” on page 51

■ “Opposite-Edge Capture Edge-Aligned Input” on page 52

■ “Opposite-Edge Capture Center-Aligned Input” on page 52

Same-Edge Capture Edge-Aligned Input
In an edge-aligned input configuration, the constraints specify the clock and data 
relationship at the FPGA inputs. The clock signal is often delayed in the FPGA 
(typically with a PLL) so that it can meet the micro-timing parameters (utSU and utH) 
of the FPGA registers used to capture the data.

Figure 65 shows the setup and hold relationships that must be analyzed if your input 
circuit does not include a PLL, or includes a PLL that clocks the data capture registers 
with a phase shift less than or equal to 0. The dashed line shows the desired setup and 
hold relationships when there is a phase shift less than 0. Red arrows indicate setup 
relationships, and blue arrows indicate hold relationships.

Example 49.

set_input_delay -max <skew> -clock [get_clocks virtual_clock] \
[get_ports data_in]

set_input_delay -max <skew> -clock [get_clocks virtual_clock] \
-clock_fall [get_ports data_in] -add_delay

set_input_delay -min <negative skew> -clock [get_clocks virtual_clock] \
[get_ports data_in] -add_delay

set_input_delay -min <negative skew> -clock [get_clocks virtual_clock] \
-clock_fall [get_ports data_in] -add_delay

Figure 65. Desired Setup and Hold for Edge-Aligned Input
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In a same-edge capture configuration, the setup relationship is between the same 
launch and latch edges. The hold relationship is between opposite edges, with the 
launch edge occurring one period after the latch edge. Use the destination setup 
multicycle exceptions in Example 50 to ensure that the proper setup and hold 
relationships are analyzed.

Use the false path exceptions in Example 51 to prevent timing analysis on 
opposite-edge transfers.

Same-Edge Capture Center-Aligned Input
Figure 66 shows the setup and hold relationships that must be analyzed if data and 
clock are center-aligned, or your input circuit includes a PLL that clocks the data 
capture registers with a phase shift greater than 0. Red arrows indicate setup 
relationships, and blue arrows indicate hold relationships.

In this case the default setup and hold relationships are the ones that must be 
analyzed for DDR inputs. The only exceptions necessary are the false path exceptions 
to prevent timing analysis on opposite-edge transfers, shown in Example 52.

Example 50.

set_multicycle_path -setup -end -rise_from [get_clocks virtual_clk] \
-rise_to [get_clocks data_clk] 0

set_multicycle_path -setup -end -fall_from [get_clocks virtual_clk] \
-fall_to [get_clocks data_clk] 0

Example 51.

set_false_path -setup -fall_from [get_clocks virtual_clk] -rise_to \
[get_clocks data_clk]

set_false_path -setup -rise_from [get_clocks virtual_clk] -fall_to \
[get_clocks data_clk]

set_false_path -hold -rise_from [get_clocks virtual_clk] -rise_to \
[get_clocks data_clk]

set_false_path -hold -fall_from [get_clocks virtual_clk] -fall_to \
[get_clocks data_clk]

Figure 66. Default Setup and Hold for Center-Aligned Input

Virtual Clock

Data Clock



Page 52 Source-Synchronous Inputs

AN 433: Constraining and Analyzing Source-Synchronous Interfaces © May 2016 Altera Corporation

Opposite-Edge Capture Edge-Aligned Input
Figure 67 shows the setup and hold relationships that must be analyzed for 
opposite-edge capture if your circuit does not include a PLL, or includes a PLL that 
clocks the data capture registers with a phase shift less than or equal to 0. Red arrows 
indicate setup relationships, and blue arrows indicate hold relationships.

In this case, false path exceptions are necessary, because the setup and hold 
relationships that must be analyzed are not the ones that are analyzed by default for 
DDR inputs. Add the false path exceptions in Example 53 to prevent timing analysis 
on same-edge transfers.

Opposite-Edge Capture Center-Aligned Input
Figure 68 shows the setup and hold relationships that must be analyzed for 
opposite-edge capture, if data and clock are center-aligned, or your input circuit 
includes a PLL that clocks the data capture registers with a phase shift greater than 
zero. Red arrows indicate setup relationships, and blue arrows indicate hold 
relationships.

Example 52.

set_false_path -setup -fall_from [get_clocks virtual_clk] -rise_to \
[get_clocks data_clk]

set_false_path -setup -rise_from [get_clocks virtual_clk] -fall_to \
[get_clocks data_clk]

set_false_path -hold -rise_from [get_clocks virtual_clk] -rise_to \
[get_clocks data_clk]

set_false_path -hold -fall_from [get_clocks virtual_clk] -fall_to \
[get_clocks data_clk]

Figure 67. Desired Setup and Hold for Edge-Aligned Input
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Example 53.

set_false_path -setup -rise_from [get_clocks virtual_clk] -rise_to \
[get_clocks data_clk]

set_false_path -setup -fall_from [get_clocks virtual_clk] -fall_to \
[get_clocks data_clk]

set_false_path -hold -fall_from [get_clocks virtual_clk] -rise_to \
[get_clocks data_clk]

set_false_path -hold -rise_from [get_clocks virtual_clk] -fall_to \
[get_clocks data_clk]
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Opposite-edge capture center-aligned inputs require a complex combination of 
destination multicycle exceptions and false path exceptions to change the default 
timing analysis behavior to the desired behavior. Without any multicycle or false path 
exceptions, Figure 69 shows the timing relationships that are analyzed by default. Red 
arrows indicate setup relationships, and blue arrows indicate hold relationships. The 
first waveform shows the setup relationships for rise-rise and rise-fall transfers in red, 
and the hold relationships in blue. The second waveform shows the setup 
relationships for fall-rise and fall-fall transfers in red, and the hold relationships in 
blue.

Use the multicycle exceptions shown in Example 54 to change the setup and hold 
relationships for the same-edge data transfer.

Figure 70 shows the setup and hold relationships after the multicycle exceptions are 
applied. The dashed lines show the relationships after the destination setup 
multicycle exceptions are applied. Red arrows indicate setup relationships, and blue 
arrows indicate hold relationships. The first waveform shows the setup relationships 
for rise-rise and rise-fall transfers in red, and the hold relationships in blue. The 
second waveform shows the setup relationships for fall-rise and fall-fall transfers in 
red, and the hold relationships in blue.

Figure 68. Desired Setup and Hold for Opposite-Edge Capture, Center-Aligned Input

Figure 69. Default Timing Relationships Without Multicycle or False Path Exceptions
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Example 54.

set_multicycle_path -setup -end -rise_from [get_clocks virtual_clk] \
-rise_to [get_clocks data_clk] 2

set_multicycle_path -setup -end -fall_from [get_clocks virtual_clk] \
-fall_to [get_clocks data_clk] 2

Figure 70. Default Timing Relationships with Multicycle Path Exceptions
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Finally, add the false path exceptions shown in Example 55 to cut same-edge transfers.

Figure 71 indicates the paths that are cut by the false path exceptions in Example 55 
with dotted lines. It indicates the paths that are analyzed with solid lines. Red arrows 
indicate setup relationships, and blue arrows indicate hold relationships. The first 
waveform shows the setup relationships for rise-rise and rise-fall transfers in red, and 
the hold relationships in blue. The second waveform shows the setup relationships for 
fall-rise and fall-fall transfers in red, and the hold relationships in blue.

Timing Analysis
Figure 72 shows a simple source-synchronous DDR input design example used to 
illustrate timing analysis concepts.

The clock sent to the device has a 90° phase shift to center align it with the data, so no 
shift is necessary in the input circuit. There is a +/–100 ps skew requirement for the 
data. The input is constrained with the constraints shown in Example 56.

Example 55.

set_false_path -setup -rise_from [get_clocks virtual_clk] -rise_to \
[get_clocks data_clk]

set_false_path -setup -fall_from [get_clocks virtual_clk] -fall_to \
[get_clocks data_clk]

set_false_path -hold -fall_from [get_clocks virtual_clk] -rise_to \
[get_clocks data_clk]

set_false_path -hold -rise_from [get_clocks virtual_clk] -fall_to \
[get_clocks data_clk]

Figure 71. Default Timing Relationships with False Path Exceptions
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Figure 73 shows the clock waveforms for the launch and latch clocks.

Report Timing
To report timing for the input, use the report_timing command with the 
-from_clock and -to_clock options. Use the name of the virtual clock for the 
-from_clock option, and the name of the clock driving the input registers for the 
-to_clock option. For example, use the two commands in Example 57 to report 
setup and hold timing for the circuit described previously.

Perform setup and hold analysis at all available timing corners to ensure the design 
meets timing. The slack numbers reported by each report_timing command 
indicate by how much the data meets its timing requirement. A negative value 
indicates that the constraint is not satisfied. Add the worst-case setup and hold slacks 
to determine the interface margin.

Example 56.

create_clock -name virtual_source -period 10.000
create_clock -name input_clock -period 10.000 -waveform { 2.5 7.5 } \

[get_ports clk_in]
set_input_delay -clock virtual_source -max 0.100 [get_ports data_in]
set_input_delay -clock virtual_source -min -0.100 [get_ports data_in] \

-add_delay
set_input_delay -clock virtual_source -clock_fall -max 0.100 \

[get_ports data_in] -add_delay
set_input_delay -clock virtual_source -clock_fall -min -0.100 \

[get_ports data_in] -add_delay

Figure 73. Clock Waveforms

launch

latch

0 2.5 5 10 1512.5 17.57.5nanoseconds (ns)

Example 57.

report_timing -from_clock virtual_source -to_clock input_clock -setup
report_timing -from_clock virtual_source -to_clock input_clock -hold
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Document Revision History
Table 2 shows the revision history for this application note.

Table 2. Document Revision History

Date and Document 
Version Changes Made

May 2016 v2.8 Minor change to Figure 61

January 2015 v2.7 Moved start of tSU interval in Figure 62

March 2014 v2.6 Changed “outclk” to “muxsel” in Example 6 and Example 7

February 2014 v2.5 Minor editorial change in “Interface Constraints” section

December 2013 v2.4 Fixed error in Example 2

June 2010 v2.3 Minor technical changes to Figure 45 and Figure 50

March 2010 v2.2 Minor technical and editorial changes

November 2009 v2.1 Updated “Introduction”

December 2007 v2.0 Major revision; the entire application note was changed

May 2007 v1.0 Initial release
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