
AN 584: Timing Closure Methodology
for Advanced FPGA Designs

Updated for Intel® Quartus® Prime Design Suite: 21.3

Online Version

Send Feedback AN-584

ID: 683145

Version: 2021.10.08

https://www.intel.com/content/www/us/en/docs/programmable/683145/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs..................................3
1.1. Plan Early for Timing Closure...4
1.2. Customize Settings Per Application...5
1.3. Change Fitter Placement Seeds... 5
1.4. Planning for Timing Closure...7

1.4.1. Timing Closure Planning at Specification Stage.. 7
1.4.2. Timing Closure Planning at Coding and Compilation Stage...............................8

1.5. Best Practices for Timing Closure... 11
1.5.1. Performance Planning General Guidelines... 11
1.5.2. Follow Synchronous Design Practices.. 12
1.5.3. Follow Recommended Coding Styles... 12
1.5.4. Constraining and Compiling Your Design..13

1.6. Resolving Common Timing Issues.. 16
1.6.1. Excessive Logic Levels.. 17
1.6.2. Improper Timing Constraints... 19
1.6.3. Handling High Fan-Out Registers..20
1.6.4. Metastability Issues..21
1.6.5. Reset Signal Related Issues...24
1.6.6. Small Margin Timing Constraint Failures..26
1.6.7. Long Compilation Times..26

1.7. Conclusion.. 27
1.8. Document Revision History for AN 584: Timing Closure Methodology for Advanced

FPGA Designs... 28

Contents

AN 584: Timing Closure Methodology for Advanced FPGA Designs Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. AN 584: Timing Closure Methodology for Advanced
FPGA Designs

Today’s design application and performance requirements are more challenging than
ever due to increased complexity. With the evolution of system-on-a-chip, the size of
typical designs are ever increasing. Complexities such as external memory interfaces
and mixed signal devices can challenge timing closure. You may not have control over
the pipelining or partitioning of IP blocks.

Nevertheless, your design must accommodate timing requirements for the IP in the
system to achieve a fully functional design. If you are unable to completely meet
performance requirements for any part of a design, the system may fail to function as
you want.

This application note presents design independent techniques for timing closure.
Whether you use Application Specific Standard Products (ASSPs), Application Specific
Integrated Circuits (ASICs), or Field Programmable Gate Arrays (FPGAs), rapid timing
closure poses a challenge for system design that you can overcome using these
methods.

The Intel® Quartus® Prime Fitter's default settings are set to help you meet required
timing constraints for most designs. However, for designs that cannot meet timing
requirements with default settings, use the methodology in this application note to
shorten design cycles, reduce complexity, and achieve timing closure requirements as
quickly as possible.

Shorten Design Cycles

Typically, current FPGA systems are characterized by shorter product life cycles driven
by market pressures. To be successful, designers must design, test, and bring the
product to the market as quickly as possible. Often designers must prioritize design
verification because delivering successful products at the first trial is essential for
economic viability.

The Intel Quartus Prime software provides features that help you meet market
pressure and stringent performance goals along with shorter design cycles. The Intel
Quartus Prime software provides accurate timing models, advanced timing analysis,
and fine-tuned Fitter algorithms to meet your goals.

With the default Intel Quartus Prime Compiler settings, you can often achieve push-
button timing closure for typical FPGA designs. For those designs where push-button
timing closure is difficult, the Intel Quartus Prime software helps you to plan for timing
closure at the beginning of your design cycle to accelerate timing closure at the end of
the cycle.

683145 | 2021.10.08

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Reduce Timing Closure Complexities and Conflicts

Many factors can increase the difficulty of timing closure. For example, the placement
of specific resources in a location on the FPGA could be a complexity. Specialty blocks,
such as DSPs, RAMs, and transceivers are sometimes located in areas of the FPGA
where routing availability can be problematic because of congestion around the blocks.
Poor resource placement by the Fitter can result in timing not meeting all
requirements.

Timing closure conflicts can occur between the resource, area, power, and timing
requirements that you specify for your design. For example, often mobile devices must
trade power for speed considerations. If your design requires more resources, you
must distribute the resources across the target FPGA device. Widely distributed
resources tend to have long interconnections. At smaller device geometries, delays are
dominated by interconnect delays rather than cell delays. To have shorter net lengths,
you ideally have a smaller area. Therefore, these two requirements generally conflict.

Another common timing closure conflict occurs between reliability and the time
available for verification. Because of the reduced market window that dictates your
product’s success, system designer's want to have a design working within the
shortest amount of time, at the lowest possible cost, for a product that is simple,
scalable, and reliable. To maximize the window of opportunity, you must shrink the
design cycle. However, the requirement to have a successful design results in having
to spend more time verifying the design. All of these complexities increase the
challenge of closing timing on a design.

Follow these guidelines and methodology to improve productivity, close timing faster,
and reduce the number of Compiler iterations:

• Plan Early for Timing Closure on page 4

• Customize Settings Per Application on page 5

• Change Fitter Placement Seeds on page 5

• Planning for Timing Closure on page 7

• Best Practices for Timing Closure on page 11

• Resolving Common Timing Issues on page 16

1.1. Plan Early for Timing Closure

Planning for timing closure early in the design cycle can help you identify issues before
they become a challenge requiring debug. The decisions that you make early in the
design phase have a great effect on later phases of your design, such as how to
partition the design, the simulation strategy, and the verification strategy. By
considering these factors at the preliminary stages of the design, you can avoid
problems that might arise later. Do not wait for all the blocks to be coded to compile
the entire design for the first time.

Always practice synchronous design techniques and follow Intel FPGA recommended
HDL coding practices that are independent of other EDA tools. For an effective design,
you must choose the target device architecture and properly constrain your design for
timing. Identify any false and multicycle paths in your design to generate an accurate
timing analysis report. The accuracy of timing analysis is dependent on the proper
application of timing constraints and exceptions. Proper constraints and exceptions
cause the Compiler to apply extra effort in specific areas to meet the constraints.

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs

683145 | 2021.10.08

AN 584: Timing Closure Methodology for Advanced FPGA Designs Send Feedback

4

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For more details about good design and coding practices, and constraining your design
for timing, refer to Intel Quartus Prime Pro Edition User Guide: Design
Recommendations.

1.2. Customize Settings Per Application

You must consider a variety of features before choosing a device or a specific
technology for your applications. For example, factors such as device cost, operating
speed, and power are some key points for consideration early in your system design.

The Intel Quartus Prime software includes many precise settings that help you to
achieve your specific design goals. The default settings generally provide the most
balanced performance, power, and resource optimization trade-offs, but you can
choose non-default settings to tailor the implementation for your application.

1.3. Change Fitter Placement Seeds

The Intel Quartus Prime Compiler's Fitter stage performs the place and route of your
design. When run, the Fitter creates a semi-random initial placement for the logic it
derives from the initial condition of your design RTL. The Fitter's goal is to find a
placement that the Compiler can successfully route and that also meets all constraints
that you specify.

It is possible to achieve a successful place and route using different initial placements.
The Fitter searches for the best solution among a set of different possible and valid
solutions within the solution space. The Fitter might converge to different solutions in
the solution space, depending on the given initial conditions.

The initial condition of the design is a function of all the source files, optimization
settings, and the Fitter Initial Placement Seed setting value. A change in any of
these variables results in a change in the initial placement. A change in initial
placement affects how optimizations proceed, producing a different Fitter result. This
variation in Fitter results is the “Fitter seed effect.”

The Fitter seed effect determines which optimizations happen during a Fitter run.
Because the project seed consists of inputs you specify in the Intel Quartus Prime
software, any modification, such as changing a net name, pin name, or making a new
assignment, changes the project seed and the final results.

A new Fitter run with a different seed places the Fitter into a new area in the solution
space, resulting in a different initial placement. If you change the Fitter seed, the
Compiler might converge on a different solution because of the modified initial
placements. Therefore, changing the Fitter seed can produce different place and route
results.

You specify a non-negative integer as an input to the Fitter seed. Changing the Fitter
seed value may not produce a better fit, but the change does make the Fitter use a
different initial placement. This integer seed value allows you to try different initial
placements without any change in the design or settings.

You can run a “seed sweep” to try different initial placements to guide a Fitter, using
different seeds or settings to find the best performance results for a given design
using the same optimization settings.

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs

683145 | 2021.10.08

Send Feedback AN 584: Timing Closure Methodology for Advanced FPGA Designs

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can use a seed sweep to determine the optimal seed value for your design if other
initial conditions remain unchanged. The default Fitter Initial Placement Seed value
is 1. To change the default Fitter Initial Placement Seed value:

1. Click Assignments ➤ Settings ➤ Compiler Settings.

2. On the Optimization Mode tab, click the Advance Settings (Fitter) button.

3. In the search field, type seed.

4. For Fitter Initial Placement Seed, specify a new non-negative integer value.

Figure 1. Fitter Initial Placement Seed

As an alternative to the GUI setting, you can specify the following equivalent setting in
the .qsf file:

set_global_assignment -name SEED <value>

Using different seed values causes a variance in the Fitter optimization results for
compilations on the same design. For example, a seed value of 2 might have the best
results for one of your designs, but when you make other changes in the design,
either in the source or in the settings, that value might not produce the best results.
Also, in a different design, a seed value of 1 might give the best results. On average,
you can expect to see about ±5% variance in the results across different seed values.

There is no definitive seed value that guarantees the best results for every design. The
varying results with seed value changes are design dependent.

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs

683145 | 2021.10.08

AN 584: Timing Closure Methodology for Advanced FPGA Designs Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4. Planning for Timing Closure

Proper planning can help you achieve timing closure faster at the end of the design
cycle. Because there are no set rules for timing closure that work with every design,
the best practices are fairly generic and applicable in many situations. To reduce
design iterations and debug time, follow the guidelines in this section.

1.4.1. Timing Closure Planning at Specification Stage

Start planning for timing closure at the specification stage and decide how you would
like to interface with the device in the target system before coding for the design
blocks.

Create a block diagram that shows partitioning of the desired functionality into specific
blocks. There is no limit to how big or small a block can be.

Very small design blocks might be difficult to track, while very large design blocks can
be difficult to debug. Try creating blocks that encapsulate distinct functionality. Keep
blocks to a size that is convenient for debugging during functional simulation and
timing closure.

Refer to the following topics for timing closure planning at the specification stage:

Plan for the Target FPGA Device on page 7

Plan for On-Chip Debugging on page 8

1.4.1.1. Plan for the Target FPGA Device

The devices in each Intel FPGA family are available with different design densities,
speed grades, and packaging options to accommodate different applications. in design
planning, choose a device with a specification that meets your timing requirements.

Some FPGA device feature requirements to consider are:

• Performance

• Logic and memory density

• I/O density

• Power utilization

• Packaging

• Cost

The Intel Quartus Prime software optimizes and analyzes your design using different
timing models for each speed grade. If you migrate to a device with a different speed
grade, you must perform timing analysis again to ensure that there are no timing
violations due to changes in the device speed grade.

For more information about choosing a device, refer to Design Planning in Intel
Quartus Prime Pro Edition User Guide: Getting Started.

Related Information

Design Planning, Intel Quartus Prime Pro Edition: Getting Started

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs

683145 | 2021.10.08

Send Feedback AN 584: Timing Closure Methodology for Advanced FPGA Designs

7

https://www.intel.com/content/www/us/en/programmable/documentation/spj1513986956763.html#mwh1409958354390
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.4.1.2. Plan for On-Chip Debugging

The Intel Quartus Prime software includes on-chip debugging tools that offer different
advantages and trade-offs, depending on the system, design, and user.

Evaluate on-chip debugging options early in the design process to ensure that your
system board, Intel Quartus Prime project, and design files are all set-up to support
the appropriate options.

Timing errors due to unspecified timing requirements can appear as functional failures
of the design. If you are able locate the functional block where errors originate, it is
easier to find the source of the errors.

For more information about in-system design debugging, as well as the Intel Quartus
Prime debugging tools, refer to Intel Quartus Prime Pro Edition User Guide: Debug
Tools.

Related Information

Intel Quartus Prime Pro Edition User Guide: Debug Tools

1.4.2. Timing Closure Planning at Coding and Compilation Stage

The coding and compilation approach that you use can help you achieve faster timing
closure. The following section describes planning for design hierarchies and partitions,
planning for early compilation of individual design blocks, and planning for design
verification during the coding and compilation stage of the design flow:

Plan for Design Hierarchy and Block Partitioning on page 8

Plan for Early Compilation of Design Blocks on page 9

Plan for Verification on page 10

1.4.2.1. Plan for Design Hierarchy and Block Partitioning

Flat designs are generally more difficult to optimize and debug because you cannot
always isolate the timing issue. Using a hierarchical design methodology offers several
advantages, such as:

• Hierarchical designs allow easier debug and optimization of individual design
blocks.

• You can assign the design hierarchy elements into logical partitions that are
functionally independent.

• These partitions allow stand-alone block verification.

• You can use design blocks for reuse and preserve synthesis and timing results for
blocks that are fully coded and meeting timing.

Planning ahead by appropriately partitioning your design reduces the need for
unplanned changes when closing timing at the end of the design cycle.

When you change RTL code or Compiler settings for one block in the design, this
produces different compilation results compared to previous settings. The different
compilation results can cause timing violations in blocks that do not reflect the same
corresponding code or setting changes. However, with the block-based incremental
compilation flow, you can preserve earlier results for a block that you do not want to
change.

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs

683145 | 2021.10.08

AN 584: Timing Closure Methodology for Advanced FPGA Designs Send Feedback

8

https://www.intel.com/content/www/us/en/programmable/documentation/nfc1513989909783.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The incremental block-based compilation feature allows you to partition a design,
compile the design partitions separately, and reuse the results for unchanged
partitions. You can preserve performance of unchanged blocks and reduce the number
of design iterations. The performance preservation of incremental block-based
compilation allows you to focus timing closure on unpreserved partitions, or on blocks
that have difficulty meeting timing requirements.

Design block reuse and incremental block-based compilation flows are available in the
Intel Quartus Prime software. For more information on effectively using these flows,
refer to Intel Quartus Prime Pro Edition User Guide: Block-Based Design.

Related Information

Intel Quartus Prime Pro Edition User Guide: Block-Based Design

1.4.2.2. Plan for Early Compilation of Design Blocks

After first identifying the major functional blocks of the design, you can partition the
design into manageable blocks to facilitate multiple designers and independent and
incremental optimization of design blocks.

Compile the major blocks in your design as soon as you can, even if your design is not
complete. By doing this, you can also identify resource issues early in the design
cycle.

A common reason for prolonged design cycles is waiting for all code completion before
compiling the design. With this approach, you do not detect significant issues until the
design and dependencies are very mature.

Using the incremental block-cased compilation flow, you can assign blocks that are not
yet available, or that are being developed independently as "empty" partitions.

When creating design partitions:

• Try to minimize inter-block connections.

• Register all inputs and outputs from each block to avoid critical timing paths
crossing between partition boundaries.

• Details of other partitions contents are not visible to the Compiler when compiling
a single partition block. Therefore, optimization (or logic minimization) across
partitions cannot occur.

• Add each major block or partition in your design as soon as HDL coding is
completed and compile incrementally.

• If certain block partitions are finished and no modification is needed, you have the
option to preserve these partitions as soon as they meet timing requirements.

Incremental timing closure can help your design meet timing faster, as the Fitter
works more on optimizations and small RTL changes without influencing any preserved
partitions.

Compiling blocks early using the incremental block-based compilation helps you to
uncover and resolve design issues early before they can become complicated problems
in the final timing closure stages.

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs

683145 | 2021.10.08

Send Feedback AN 584: Timing Closure Methodology for Advanced FPGA Designs

9

https://www.intel.com/content/www/us/en/programmable/documentation/yrh1513988099640.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can set the following options to reduce the total compile time during the initial
stages of your design. These options are especially helpful for large or complex blocks
that you want to initially compile independently, or when ready to start integrating the
block:

Click Assignments ➤ Settings ➤ Compiler Settings ➤ Optimization Mode ➤
Compile Time, and then choose one of the following:

• Aggressive Compile Time

• Fast Functional Test

Both of these modes perform initial timing and functional analyses without requiring
excessive compile time.

Figure 2. Compile Time Optimization Mode Settings

For more information about incremental block-based compilation, refer to Incremental
Block-Based Compilation Flow and Setting-Up Team-Based Designs sections of the
Intel Quartus Prime Pro Edition User Guide: Block-Based Design.

Related Information

• Setting-Up Team-Based Designs, Intel Quartus Prime Pro Edition User Guide:
Block-Based Design

• Incremental Block-Based Compilation Flow, Intel Quartus Prime Pro Edition User
Guide: Block-Based Design

1.4.2.3. Plan for Verification

In general, designs that target large FPGAs are complex in nature, requiring
comprehensive planning for design verification. You can use any of the supported
third-party simulators to run functional verification on your design.

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs

683145 | 2021.10.08

AN 584: Timing Closure Methodology for Advanced FPGA Designs Send Feedback

10

https://www.intel.com/content/www/us/en/programmable/documentation/yrh1513988099640.html#lyq1536244464392
https://www.intel.com/content/www/us/en/programmable/documentation/yrh1513988099640.html#lyq1536244464392
https://www.intel.com/content/www/us/en/programmable/documentation/yrh1513988099640.html#kvk1492037983814
https://www.intel.com/content/www/us/en/programmable/documentation/yrh1513988099640.html#kvk1492037983814
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Plan to verify the design by exercising it with a simulation test suite at the RTL level.
This level of verification ensures that the HDL contains the functionality you want,
allowing you to focus on any potential timing problems.

If you have functional and timing problems simultaneously, it can be difficult to isolate
issues and the correction that you need, which increases the necessary debug time.

Functional issues (such as incorrect interpretation of specifications, or
implementation) may mask potential timing problems in the design, resulting in the
need for engineering change orders (ECOs) at a later stage.

When using design partitions, you can verify the individual partitions. You can then
reuse some of your partition-level test benches and test cases in the top-level test
suite.

For more information about using third-party simulators for simulation, refer to Intel
Quartus Prime Pro Edition User Guide: Third-party Simulation.

Related Information

Intel Quartus Prime Pro Edition: Third-party Simulation

1.5. Best Practices for Timing Closure

The following sections provide general guidelines for performance planning, and
describe best practices for coding styles and constraints:

Performance Planning General Guidelines on page 11

Follow Synchronous Design Practices on page 12

Follow Recommended Coding Styles on page 12

Constraining and Compiling Your Design on page 13

1.5.1. Performance Planning General Guidelines

The following are general guidelines for performance planning:

• Optimize and debug incrementally by creating appropriate hierarchical blocks and
partitions in your project.

• Register all block inputs and outputs.

• Optimize major blocks with higher than required speed when running compilation
on individual design blocks.

Note: Retaining approximately 10%-20% timing margin at the block level can help
achieve timing closure after integration of the blocks.

• Plan for the available resource types in the target device (such as the necessary
RAM blocks, DSP blocks, PLLs, and transceiver locations) while coding RTL for your
design.

• Pipeline the design for better performance.

Related Information

Intel Quartus Prime Pro Edition User Guide: Design Optimization

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs

683145 | 2021.10.08

Send Feedback AN 584: Timing Closure Methodology for Advanced FPGA Designs

11

https://www.intel.com/content/www/us/en/programmable/documentation/gft1513990268888.html
https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.2. Follow Synchronous Design Practices

Following synchronous design practices can simplify the specification of timing
constraints.

Although asynchronous techniques might save time in the short run and seem easier
to implement, asynchronous design techniques rely on propagation delays and clock
skews that do not scale well between different device families or architectures.

Asynchronous circuits are prone to glitches and race conditions that can render the
resulting implementation unreliable, increasing the complexity of constraints.

In the absence of appropriate constraints, synthesis or place-and-route tools may not
perform the best optimizations, resulting in inaccurate timing analysis results.

Moreover, in a synchronous design, a clock signal triggers every event. With the Fitter
working to achieve all timing requirements, a synchronous design behaves in a more
reliable manner for all PVT conditions. Synchronous designs easily migrate to different
device families or speed grades.

For more information about using synchronous design practices for FPGA designs,
refer to Synchronous FPGA Design Practices in Intel Quartus Prime Pro Edition User
Guide: Design Recommendations.

Related Information

Following Synchronous Design Practices, Intel Quartus Prime Pro Edition User Guide:
Design Recommendations

1.5.3. Follow Recommended Coding Styles

Your coding style has a significant impact on implementation in the FPGA because
synthesis tools can optimize and interpret the design differently based on style.
Therefore, you must decide how to code the design to assist the optimizations done by
the synthesis tool.

FPGA devices are register rich, so pipelining your design can help you meet required
performance, without adversely affecting resource use. Adding adequate pipeline
registers can help you avoid a large amount of combinational logic between registers.

Another practice to avoid is unintended latch inference. Intel Quartus Prime Synthesis
issues a warning message when unintended latch inference occurs. The FPGA
architecture is not optimized for latch implementation. Latches generally have slower
timing performance compared to equivalent registered circuitry.

Improper use of latch schemes can also cause glitches to pass from input to output
when signals are enabled, putting latches in transparent mode. You must design such
structures properly to avoid this unexpected circumstance. However, timing analysis
cannot identify these safe applications.

Refer to HDL Design Guidelines in Intel Quartus Prime Pro Edition User Guide: Design
Recommendations for information on how to avoid latches, combinational loops, and
other styles that are not suitable for FPGA implementation.

If you use unsupported operations (such as asynchronously clearing of RAM content)
with memory blocks, the Intel Quartus Prime software may implement the code with
logic cells rather than more suitable RAM blocks.

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs

683145 | 2021.10.08

AN 584: Timing Closure Methodology for Advanced FPGA Designs Send Feedback

12

https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html#mwh1409959485233
https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html#mwh1409959485233
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you are unaware of your hardware resources, you can easily underutilize some of
the available resources. In general, do not use constructs that lack the equivalent
hardware implementation available in the device. For example, if you infer RAM
locations and use synchronous resets on RAM locations to clear the contents, or to
initialize the values, your code might not be mapped to any of the available RAM
blocks in the device.

This condition occurs because the RAM locations in the FPGA device do not have
asynchronous or synchronous resets available for RAM cells. Instead, logic that models
a memory with a reset is implemented in logic cells. Review your device specifications
to confirm whether having a known initial value in the RAMs is necessary for proper
design function. This condition is not typically required. If RAM cells must initialize to
certain known values (such as all 0’s), you can perform write cycles to the RAM
immediately after power up.

You must consider hardware mapping when writing your HDL. Changes in the HDL
code can affect the number of logic levels and the corresponding timing. Although the
Compiler optimizes your design, unnecessary optimizations can affect software
performance. Modifying the HDL can improve the quality of results.

Improper coding of RAM blocks can also cause inference of the native RAM surrounded
by an unnecessary cloud of logic cells and registers required to implement the
equivalent functionality. This cloud of logic is barely noticeable, but can cause extra
resource utilization and worsen timing closure in the area.

Refer to Recommended HDL Coding Styles in Intel Quartus Prime Pro Edition User
Guide: Design Recommendations for information on inferring memories, multiplier
blocks, DSP blocks, and how to use provided HDL RAM templates.

Related Information

• HDL Design Guidelines, Intel Quartus Prime Pro Edition User Guide: Design
Recommendations

• Recommended HDL Coding Styles, Intel Quartus Prime Pro Edition User Guide:
Design Recommendations

1.5.4. Constraining and Compiling Your Design

This section describes best practices for constraining and compiling your design.

1.5.4.1. Setting Location Constraints

You can specify location constraints that place logic and I/O blocks at specific locations
in the chip during place and route. However, the Compiler's default logic placement is
generally more suitable than specifying specific location constraints.

For example, it may not be helpful to assign a block containing a critical path to a
Logic Lock region that you subsequently constrain and squeeze the path. The Fitter
identifies and attempts to optimize the critical path by considering many physical
constraints to find the best placement. Restricting this auto-placement can reduce
performance and requires careful use. There are times when location constraints
effectively aid in timing closure, directly or indirectly.

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs

683145 | 2021.10.08

Send Feedback AN 584: Timing Closure Methodology for Advanced FPGA Designs

13

https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html#mwh1409959489991
https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html#mwh1409959489991
https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html#mwh1409959570946
https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html#mwh1409959570946
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can define Logic Lock regions or location constraints to constrain logic blocks to
specific areas in the FPGA. This technique allows you to create a floorplan for your
design that supports the incremental block-based compilation flow and team-based
designs.

In a team-based designs, a different designer can design each major block in the
project. For such cases, you define locations for each block to have its assigned area
in the device. You can reserve areas in the device based on interfaces and resources,
such as transceivers or RAM blocks. You can also reserve the region on a previous
Fitter-assigned area.

Note: Excessive location constraints can negatively affect design performance.

Refer to Setting-Up Team-Based Designs in Intel Quartus Prime Pro Edition User
Guide: Block-Based Design.

Related Information

Setting-Up Team-Based Designs, Intel Quartus Prime Pro Edition User Guide: Block-
Based Design

1.5.4.2. Setting Proper Timing Constraints

The Intel Quartus Prime software preserves timing constraints in Synopsys Design
Constraints (.sdc) file format that uses the Tcl syntax. You can embed these .sdc
constraints in a scripted compilation flow, and even create sets of .sdc files for timing
optimization.

The Fitter uses the .sdc timing constraints to further optimize your design. The
Timing Analyzer uses the .sdc timing constraints for static timing analysis.

By default, the Timing Analyzer assumes that all clocks in a design are related to each
other, and analyzes all paths. It is possible that paths between some clock domains
are false, and require no analysis. If the clocks in your design asynchronous to each
other, use the set_clock_groups command in your constraint file to specify this
relationship in your clock groups.

Investigate the relationship between various clocks in your design and categorize
them appropriately. Supplying the appropriate constraints helps you separate real
violations from false violations. Make changes in your HDL or assignments to solve
issues when you identify real violations.

When you have multiple interacting clock domains, or when your design has high
performance circuits, such as external memory interfaces, or clock multiplexing,
ensure that the correct inter-clock constraints are present. Otherwise, the Compiler
cannot focus effort on only the most critical paths.

For examples that show different scenarios for constraining your design, refer to the
Intel Quartus Prime Timing Analyzer Cookbook and Applying Timing Constraints
section of Intel Quartus Prime Pro Edition User Guide: Timing Analyzer.

Related Information

• Intel Quartus Prime Timing Analyzer Cookbook

• Applying Timing Constraints, Intel Quartus Prime Pro Edition User Guide: Timing
Analyzer

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs

683145 | 2021.10.08

AN 584: Timing Closure Methodology for Advanced FPGA Designs Send Feedback

14

https://www.intel.com/content/www/us/en/programmable/documentation/yrh1513988099640.html#lyq1536244464392
https://www.intel.com/content/www/us/en/programmable/documentation/yrh1513988099640.html#lyq1536244464392
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_timequest_cookbook.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/psq1513989797346.html#mwh1416951964055
https://www.intel.com/content/www/us/en/programmable/documentation/psq1513989797346.html#mwh1416951964055
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.5.4.3. Using Optimal Compiler Settings for Your Design

In addition to using the correct design methodology and proper timing constraints, use
the optimal Compiler settings for your design goals.

The Intel Quartus Prime software offers many settings to help you meet different
design requirements. If you do not specify the appropriate setting, design
performance may suffer.

The Intel Quartus Prime software has various settings to help meet different design
requirements. For example, if your design targets a mobile device, you might specify
the Aggressive power setting to optimize your design for lowest power consumption.
Similarly, if your design targets a low-cost system, you might pick a device with a
specific architecture and optimize your design for that architecture. If you want to
reduce the size of the design, you can optimize for Aggressive area.

The Compiler's default Optimization Mode settings offer a balance of performance,
area, routability, power, and compilation time. By trading off one optimization for
another, you can meet your preferred design requirements.

Select the Optimization Mode in Assignments ➤ Settings ➤ Compiler Settings ➤
Optimization Mode.

Figure 3. Compiler Optimization Modes

There is no single collection of settings that achieves the best performance for all
designs. Each design is unique, and a setting set that derives the best performance for
one design has a different impact in another design.

Specifying the Superior performance optimization modes can help in some designs,
but some of the modes can have a detrimental impact on your primary goal. You
might be making optimizations that increase the compilation time without a
corresponding improvement in performance. Only apply settings that help meet your
design goals.

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs

683145 | 2021.10.08

Send Feedback AN 584: Timing Closure Methodology for Advanced FPGA Designs

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The settings that you specify for a project revision are specific to that revision. When
you make substantial changes to a design, you may need to modify some of the
Compiler settings. Whenever you make large changes in your design, you can use the
Design Space Explorer II (DSE) to run seed sweeps that identify the best collections of
settings for your revision. You can do multiple DSE runs with different compile settings
and using multiple seeds by clicking Tools ➤ Launch Design Space Explorer II.

Figure 4. Design Space Explorer II Exploration Options

1.6. Resolving Common Timing Issues

When the Timing Analyzer reports failing paths, verify if the failing requirements are
correct. By default, the Timing Analyzer handles all clock domains as related, and this
can cause some invalid requirements. To correct this condition, group clocks in your
design appropriately. Analyze the datapath to determine how you can reduce any
critical path delays.

This section contains examples of commonly encountered timing issues and
troubleshooting practices:

Excessive Logic Levels on page 17

Improper Timing Constraints on page 19

Handling High Fan-Out Registers on page 20

Metastability Issues on page 21

Reset Signal Related Issues on page 24

Small Margin Timing Constraint Failures on page 26

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs

683145 | 2021.10.08

AN 584: Timing Closure Methodology for Advanced FPGA Designs Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Long Compilation Times on page 26

1.6.1. Excessive Logic Levels

Excessive levels of combinational logic in your design can increase the delay on a path
and cause that path to become critical. The number of logic levels between registers
may be difficult to visualize in your RTL code alone.

As an example, conditional statements are always translated as additional levels of
logic. Verify situations before adding conditional statements within another conditional
statement. Ensure that the modifications you make apply the conditions only on the
branch where it is necessary.

The example below shows a section of a Verilog HDL code. Assume that counter1 is
an 8-bit counter, and that counter2 is a 12-bit counter. TC1 and TC2 represent the
status count signals for these counters:

if (reset == 0) begin
 counter1 <= 0;
 counter2 <= 0;
 TC1 <= 1'b0;
 TC2 <= 1'b0;

 end else begin
 if (incr ==1) begin
 if (counter1 == value1) begin
 TC1 <= 1'b1;
 if (counter2 == value2) begin
 TC2 <= 1'b1 ;
 end else begin
 counter2 <= counter2 +1 ;
 end
 end else begin
 counter1 <= counter1 +1 ;
 end

end

The updates for counter2 are based on the results of the nested 8-bit and 12-bit
comparators. Depending on the device architecture, this combinational logic that
implements in several levels can form a critical path. The way the logic maps can
affect the number of constituent delays.

The Timing Analyzer design metric reports provide a summary of the logic depths in
your design per clock domain.

In the Timing Analyzer, click Tasks ➤ Reports ➤ Design Metrics ➤ Report Logic
Depth to generate this report.

Figure 5 on page 18 shows clk_2x domain’s worst depth is at 4. You can check the
paths with this depth by right-clicking on the clock domain and depth element to
generate a timing report.

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs

683145 | 2021.10.08

Send Feedback AN 584: Timing Closure Methodology for Advanced FPGA Designs

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5. Report Logic Depth

Figure 6. Report Paths of Depth 4 or More

The report indicates that the path with the longest depth belongs to the nested
comparators in the example, and is contributing to several critical paths on the design.

The Data Path tab report on the right shows all the interconnected elements, while
the Statistics tab report on the left shows a summary of the total cells and
interconnect delays (IC). In this case, the delay contributes the biggest percentage on
the total delay of the data path at 41% and 45% respectively.

To correct this condition, it is possible to check the required conditions in parallel with,
or before the results are available from other logical operations. By doing so, you can
reduce the delay on the critical path.

In some cases, it may not be possible to modify the logic by parallel operations. In
these cases, you can consider using pipeline registers to split the logic operations that
occur in one cycle. You must account for the effect of this added latency in other parts
of the design if you use this approach.

Perform the following general guidelines to fix failing critical register-to-register paths:

• Give priority to improving the code instead of modifying the Compiler Settings.

• Analyze whether critical paths can be re-coded.

• Check if logic can be pushed across register boundaries.

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs

683145 | 2021.10.08

AN 584: Timing Closure Methodology for Advanced FPGA Designs Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Check if part of the logic can be done in parallel, or in a different data cycle (a
cycle before or later).

• When you modify code, be aware of the implementation in hardware.

• If you are working on a block within a larger design, target a higher than required
timing performance prior to block integration.

1.6.2. Improper Timing Constraints

The Compiler attempts to optimize your design according to the constraints that you
provide. Therefore, improper or missing timing constraints can contribute to timing
failure. The Timing Analyzer does not analyze unconstrained paths. You must review
the Timing Analyzer report to ensure you have constrained all required timing paths.

If you omit some of the required constraints, the Timing Analyzer may generate a
report without any violations. However, if the missing constraints are critical, then
your design implementation may not perform as intended. Therefore, you must fully
constrain your design.

In addition to missing timing constraints, another common cause of timing closure
issues is under-specification or over-specification of timing constraints.

You must analyze your timing analysis report for all false or multi-cycle paths. The
Timing Analyzer attempts to optimize all paths as valid, single-cycle paths, unless you
identify them as false or multi-cycle paths. This might cause valid paths to fail timing
requirements (depending on which paths the Fitter optimizes first). To avoid this
scenario, identify false and multi-cycle paths in the .sdc file.

When you specify aggressive timing constraints on one domain, the Timing Analyzer
attempts to optimize that domain earlier than other clock domains. You can use this
technique to selectively apply more optimization effort to only one domain. The
benefit you derive from this is design dependent. Also, you must manually analyze the
failing paths to determine if they have met your requirements, even if the paths failed
the over-constrained requirement. In general, use real requirements for constraining
your design.

The Timing Analyzer assumes all clocks in a design are related, and checks for all
possible paths in the design. Apply false path constraints between clock domains that
do not have valid paths.

You can over-constrain the design if you want to improve timing performance on select
domains, particularly if compiling individual design blocks. If you can meet more
stringent constraints at the block level, it can be easier to meet the timing after you
integrate the blocks together. This technique compensates for delays that cannot be
accurately predicted at block-level implementation.

Ensure that you target the right signals that you want to constrain. Be careful in use
of wild card characters in defining timing constraints. You can unknowingly constrain
unexpected targets, leading to constraints on the wrong paths, or could lead to getting
false positive timing results.

1.6.2.1. Check Constraint Diagnostics

The Timing Analyzer can generate a set of diagnostic reports that help check timing
constraints.

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs

683145 | 2021.10.08

Send Feedback AN 584: Timing Closure Methodology for Advanced FPGA Designs

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Click Tasks ➤ Reports ➤ Constraint Diagnostics to generate these reports.

Figure 7. Timing Analyzer Constraint Diagnostics

You can use the following commands to generate the reports to verify your
constraints:

• Report Unconstrained Paths—reports illegal or unconstrained clocks, input or
output ports, and paths.

• Report SDC—reports all SDC constraints that apply.

• Report Ignored SDC—reports all SDC assignments that do not apply.

• Check Timing—reports issues on critical fields like latches, loops, no clock
drivers, and others.

• Report False Path—reports all of the false paths that apply in the design.

• Report Exceptions—reports a list all exceptions that apply in the design.

• Report Exceptions Reachability —reports the percentage of reachability on the
targets you specified in your exceptions.

1.6.3. Handling High Fan-Out Registers

Wide distribution of registers is one of the main causes of excess delay on timing
paths.

You can use the Chip Planner to view the location of high fan-out registers and the
locations they are driving. In most circumstances, the Fitter placement of registers is
superior to manual placement.

For more information about the Chip Planner, refer to Analyzing and Optimizing the
Design Floorplan in Intel Quartus Prime Pro Edition User Guide: Design Optimization.

High fan-out registers, such as broadcast signals driving multiple blocks, placed in
different directions, can have placement-warping effects on the floorplan that impact
maximum clock speed. You can identify high fan-out registers by clicking Tasks ➤
Reports ➤ Design Metrics ➤ Report Register Spread.

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs

683145 | 2021.10.08

AN 584: Timing Closure Methodology for Advanced FPGA Designs Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8. Report Register Spread

The report shows the list of possible registers being pulled by sink registers in various
directions. To learn more about this report, refer to Report Register Spread in Intel
Quartus Prime Pro Edition User Guide: Design Optimization.

You can correct this problem by duplicating the register using the
DUPLICATE_REGISTER or DUPLICATE_HIERARCHY_DEPTH .qsf assignment.

Alternatively, you can manually modify the RTL to implement the duplication, but you
must also add the preserve_syn_only synthesis attributes to the duplicates to
preserve the nodes through synthesis. The attribute allows the Fitter to do retiming or
other optimizations if needed.

logic dup_reg /* synthesis preserve_syn_only */;
(*preserve_syn_only*) logic dup_reg;

For more information on register duplication commands and techniques, refer to
Duplicate Registers for Fan-Out Control in Intel Quartus Prime Pro Edition User Guide:
Design Optimization.

Related Information

• Analyzing and Optimizing the Design Floorplan, Intel Quartus Prime Pro Edition
User Guide: Design Optimization

• Report Register Spread, Intel Quartus Prime Pro Edition User Guide: Design
Optimization

• Duplicate Registers for Fan-Out Control, Intel Quartus Prime Pro Edition User
Guide: Design Optimization

1.6.4. Metastability Issues

Clock-domain-crossing (CDC) signals can cause metastability on the capturing clock
domain register. To reduce the possibility of going metastable, you must synchronize
all signals between asynchronous clock domains with multiple stages of synchronizing
registers.

Signals with a source in one clock domain may be registered in another clock domain,
causing the data input to fail the setup or hold time requirements of the destination
register. This may cause the output of the latching register to go to an intermediate
state between a logical 1 and a logical 0. Although this intermediate value eventually
resolves to a ‘1’ or ‘0,’ the issue is the indeterminate time the value takes to resolve
itself.

Generally, a minimum of two stages is recommended. The Intel Quartus Prime
software by default is set to look for three register stages to place as close together to
obtain better Mean Time Between Failures (MTBF).

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs

683145 | 2021.10.08

Send Feedback AN 584: Timing Closure Methodology for Advanced FPGA Designs

21

https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html#mwh1410471303170
https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html#mwh1410471303170
https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html#ozd1597161644646
https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html#ozd1597161644646
https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html#mwh1410471226130
https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html#mwh1410471226130
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To change this default value, click Assignments ➤ Settings ➤ Compiler Settings ➤
Optimization Mode ➤ Advanced Settings (Synthesis) and specify a value for
Synchronization Register Chain Length.

Figure 9. Setting Synchronization Register Chain Length

The Intel Quartus Prime software can analyze designs for metastability, and offers
recommendations to reduce metastability. You can compute MTBF on circuit
parameters. You should increase the MTBF as much as possible.

Isolating failures caused by metastability can be problematic because they can appear
as sporadic device failures, which are hard to debug. Increasing the MTBF might
reduce the occurrence of such failures.

Metastability problems in your design can appear as incorrectly operating state
machines. Symptoms include skipped states, or state machines that do not recover
from a stage or lock-up. State machines might also miss triggering events that cause
state transitions. Such problems might occur when you do not synchronize control
signals to a state machine coming from other clock domains.

By synchronizing all asynchronous control signals, you can ensure that these signals
remain stable for an integral number of clock cycles, and trigger transitions
appropriately.

For more information about metastability, refer to the Managing Metastability in Intel
Quartus Prime Pro Edition User Guide: Design Recommendations.

Related Information

Managing Metastability, Intel Quartus Prime Pro Edition: Design Recommendations

1.6.4.1. Check CDC Design Assistant Rule Violations

The Intel Quartus Prime software Design Assistant uses design rule checks (DRC) to
identify potential issues on signals or buses that are crossing clock domains.

Click Compilation Report ➤ Timing Analyzer ➤ Design Assistant (Signoff) ➤
Results to view the CDC report.

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs

683145 | 2021.10.08

AN 584: Timing Closure Methodology for Advanced FPGA Designs Send Feedback

22

https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html#mwh1409959644819
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10. Design Assistant CDC DRCs

The top section of the figure shows the list of CDC rules that Design Assistant verifies.
The bottom section provides a description and recommendation for the rule violation.

Refer to Design Assistant Design Rule Checking in Intel Quartus Prime Pro Edition User
Guide: Design Recommendations

Related Information

Design Assistant Design Rule Checking, Intel Quartus Prime Pro Edition User Guide:
Design Recommendations

1.6.4.2. Check CDC Report

The Timing Analyzer generates a report on the MTBF of signals crossing clock
domains. The Timing Analyzer can also generate a summary list of all the signals,
buses, and resets that cross clock domains.

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs

683145 | 2021.10.08

Send Feedback AN 584: Timing Closure Methodology for Advanced FPGA Designs

23

https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html#mwh1409959528162
https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html#mwh1409959528162
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can generate the summary list by clicking Tasks ➤ Reports ➤ Clock Domain
Crossings in the Timing Analyzer.

Figure 11. Report Asynchronous CDC Full Report

1.6.5. Reset Signal Related Issues

Your design can have synchronous or asynchronous reset signals. Typically resets
coming into FPGA devices are asynchronous. You can convert an external
asynchronous reset to a synchronous reset by feeding it through a synchronizer
circuit. You can then use this signal to reset the rest of the design. This clock creates a
clean reset signal that is at least one cycle wide, and synchronous to the domain in
which it applies.

If you use a synchronous reset, it becomes part of the data path and affects the
arrival times in the same manner as other signals in the data path. Include the reset
signal in the timing analysis along with the other signals in the data path. Using a
synchronous reset requires additional routing resources, such as an additional data
signal.

If you use an asynchronous reset, you can globally reset all registers. This dedicated
resource helps you to avoid the routing congestion that a single reset signal causes.
However, a reset that is completely asynchronous can cause metastability issues. This
metastability occurs because the time when the asynchronous reset is removed is
asynchronous to the clock edge. If you remove the asynchronous reset signal from its
asserted state in the metastability zone, some registers could fail to reset. To avoid
this problem, use synchronized asynchronous reset signals.

A reset signal can reset registers asynchronously, but the reset signal is removed
synchronous to a clock, reducing the possibility of registers going metastable. You can
avoid unrealistic timing requirements by adding a reset synchronizer to the external
asynchronous reset for each clock domain and then using the output of the
synchronizers to drive the all register resets in their respective clock domains.

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs

683145 | 2021.10.08

AN 584: Timing Closure Methodology for Advanced FPGA Designs Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following example shows an example VDD-based (voltage drain drain) reset
synchronizer reset synchronizer implementation:

module safe_reset_sync
(external_reset, clock, internal_reset) ;

input external_reset;
input clock;
output internal_reset;
reg data1, data2, q1, q2;

always@(posedge clock or negedge external_reset) begin
 if (external_reset == 1'b0) begin
 q1 <= 0;
 q2 <= 0;
 end else begin
 q1 <= 1'b1;
 q2 <= q1 ;
 end
end

endmodule

1.6.5.1. Recovery and Removal Issues

The Timing Analyzer performs recovery and removal analysis in addition to setup and
hold analysis. Providing an appropriate reset structure for your design helps the Fitter
to place logic to meet recovery and removal timing requirements.

Recovery time is analogous to setup time, and removal time is analogous to hold time.
The difference between these sets of timing parameters is that recovery and removal
analysis occurs for asynchronous signals (such as reset) with respect to the clock.
Recovery and removal analysis helps you to ensure that your synchronous logic
behaves correctly when you assert and deassert an asynchronous control signal.

A problem that can occur with a reset signal that spans across the device, is that the
signal may not arrive at the same time relative to the clock edge for all the device
registers.

When such a reset signal is deasserted, all of the registers should exit reset. However,
if the reset signal does not meet the recovery time for some registers in the design,
those registers may not exit reset until after the next clock edge.

If such registers do not all come out of reset in the same clock cycle, and if there are
state machines with important transitions after this clock cycle, these state machines
may not behave as you expect. This condition can cause a design failure. Similarly, a
removal error can occur if you remove the reset too early, relative to the clock, and
some registers exit reset one cycle earlier.

Using a VDD-based reset synchronizer, and adding another register at the end for
duplication to drive different block resets, helps the Fitter to manage the placements
to meet these timing requirements.

For more information on resets, refer to AN 917: Reset Design Techniques for Intel
Hyperflex Architecture FPGAs.

Related Information

AN 917: Reset Design Techniques for Intel Hyperflex™ Architecture FPGAs

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs

683145 | 2021.10.08

Send Feedback AN 584: Timing Closure Methodology for Advanced FPGA Designs

25

https://www.intel.com/content/www/us/en/programmable/documentation/ezg1603893811352.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.6.6. Small Margin Timing Constraint Failures

If your design fails to meet timing requirements by a small margin, you can use DSE
II to help you select the optimum project settings to meet timing. DSE II runs multiple
compilations and compares the results to determine the best combination of settings.
Using DSE II to run a seed sweep also helps you compensate for the seed effect, as
Change Fitter Placement Seeds on page 5 describes.

If you make changes to your RTL code or project settings, run a DSE II seed sweep to
ensure that the RTL or settings changes are the true cause of improvements, rather
than the seed effect.

If your design still fails to meet timing by a small margin, you can use the best
performing seed to lock down the placement of clocks, RAMs, and DSPs from that
compilation. You lock these placements through assignment back-annotation, and then
run another round of seed-sweep using the locked-down placements. The subsequent
compilations can benefit from the initial, desired placement settings of the previous
best performing seed.

To lock down placement through assignment back-annotation, click Assignments ➤
Back-Annotate Assignments, and then select the types of assignments to back-
annotate. You can choose to append the back-annotated assignments to the .qsf, or
to create a Tcl file of assignments that you can source to the .qsf.

Figure 12. Back-Annotate Assignments Dialog Box

Assignment Type
 to Back-Annotate

Back-Annotate Only Nodes
Matching Name Filter

Assignment Storage Location

1.6.7. Long Compilation Times

If timing performance is your most important criterion, the Compiler may require
additional time to meet stringent requirements. Abnormally long compilations may
indicate:

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs

683145 | 2021.10.08

AN 584: Timing Closure Methodology for Advanced FPGA Designs Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Resource constraint issues

• Timing constraints that are impossible to meet

• Logic loops that the Compiler cannot easily resolve

For any of these conditions, review the compilation warning messages to determine
the portion of the design that is contributing most to the long compilation.

Fitter messages indicate any resource congestion that occurs. You can identify
resource congestion by reviewing the resource utilization numbers in the Compilation
Report. Utilization of 95% or more can be challenging to fit. In such cases, review
your RTL code and consider recoding of blocks to reduce logic use and remove any
redundancies.

1.7. Conclusion

Timing closure is a critical phase of your design cycle. The speed of closing timing can
determine the success or failure of a product.

Plan for timing closure early, rather than trying to meet the timing requirements with
an ad-hoc debugging effort at the end of the design cycle. By following the guidelines
of this application note, you can close timing efficiently.

Refer to the following resources for more information on design planning,
recommendations, and optimization for rapid design timing closure:

Related Information

• Intel® Quartus® Prime Pro Edition User Guide: Getting Started

• Intel® Quartus® Prime Pro Edition User Guide: Design Recommendations

• Intel® Quartus® Prime Pro Edition User Guide: Design Compilation

• Intel® Quartus® Prime Pro Edition User Guide: Design Optimization

• Intel® Quartus® Prime Pro Edition User Guide: Block-Based Design

• Intel® Quartus® Prime Pro Edition User Guide: Partial Reconfiguration

• Intel® Quartus® Prime Pro Edition User Guide: Timing Analyzer

• Intel® Quartus® Prime Timing Analyzer Cookbook

• Intel® Quartus® Prime Pro Edition User Guide: Power Analysis and Optimization

• Intel® Quartus® Prime Pro Edition User Guide: Design Constraints

• Intel® FPGAs Product Selector Guide

• Intel® Quartus® Prime Pro Edition User Guide: Debug Tools

• Intel® Quartus® Prime Pro Edition User Guide: Third-party Simulation

• AN 917: Reset Design Techniques for Intel Hyperflex Architecture FPGAs

• AN 903: Accelerating Timing Closure in Intel® Quartus® Prime Pro Edition

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs

683145 | 2021.10.08

Send Feedback AN 584: Timing Closure Methodology for Advanced FPGA Designs

27

https://www.intel.com/content/www/us/en/programmable/documentation/spj1513986956763.html
https://www.intel.com/content/www/us/en/programmable/documentation/sbc1513987577203.html
https://www.intel.com/content/www/us/en/programmable/documentation/zpr1513988353912.html
https://www.intel.com/content/www/us/en/programmable/documentation/rbb1513988527943.html
https://www.intel.com/content/www/us/en/programmable/documentation/yrh1513988099640.html
https://www.intel.com/content/www/us/en/programmable/documentation/tnc1513987819990.html
https://www.intel.com/content/www/us/en/programmable/documentation/psq1513989797346.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_timequest_cookbook.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/osq1513989409475.html
https://www.intel.com/content/www/us/en/programmable/documentation/iqe1513988936192.html
https://ark.intel.com/content/www/us/en/ark.html
https://www.intel.com/content/www/us/en/programmable/documentation/nfc1513989909783.html
https://www.intel.com/content/www/us/en/programmable/documentation/gft1513990268888.html
https://www.intel.com/content/www/us/en/programmable/documentation/ezg1603893811352.html
https://www.intel.com/content/www/us/en/programmable/documentation/fcv1571168848135.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1.8. Document Revision History for AN 584: Timing Closure
Methodology for Advanced FPGA Designs

Document Version Intel Quartus Prime
Version

Changes

2021.10.08 21.3 • Heavily revised document throughout to update for latest Intel
document style, legal, and formatting conventions.

• Revised the order of topics and grouped related items.
• Revised headings for precision and clarity.
• Updated all figures.
• First version to include an HTML publication of the document.

2014.12.19 14.1 • Updated product name for DSE II.

2009.08.28 9.0 • Initial release.

1. AN 584: Timing Closure Methodology for Advanced FPGA Designs

683145 | 2021.10.08

AN 584: Timing Closure Methodology for Advanced FPGA Designs Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20584:%20Timing%20Closure%20Methodology%20for%20Advanced%20FPGA%20Designs%20(683145%202021.10.08)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	AN 584: Timing Closure Methodology for Advanced FPGA Designs
	Contents
	1. AN 584: Timing Closure Methodology for Advanced FPGA Designs
	1.1. Plan Early for Timing Closure
	1.2. Customize Settings Per Application
	1.3. Change Fitter Placement Seeds
	1.4. Planning for Timing Closure
	1.4.1. Timing Closure Planning at Specification Stage
	1.4.1.1. Plan for the Target FPGA Device
	1.4.1.2. Plan for On-Chip Debugging

	1.4.2. Timing Closure Planning at Coding and Compilation Stage
	1.4.2.1. Plan for Design Hierarchy and Block Partitioning
	1.4.2.2. Plan for Early Compilation of Design Blocks
	1.4.2.3. Plan for Verification

	1.5. Best Practices for Timing Closure
	1.5.1. Performance Planning General Guidelines
	1.5.2. Follow Synchronous Design Practices
	1.5.3. Follow Recommended Coding Styles
	1.5.4. Constraining and Compiling Your Design
	1.5.4.1. Setting Location Constraints
	1.5.4.2. Setting Proper Timing Constraints
	1.5.4.3. Using Optimal Compiler Settings for Your Design

	1.6. Resolving Common Timing Issues
	1.6.1. Excessive Logic Levels
	1.6.2. Improper Timing Constraints
	1.6.2.1. Check Constraint Diagnostics

	1.6.3. Handling High Fan-Out Registers
	1.6.4. Metastability Issues
	1.6.4.1. Check CDC Design Assistant Rule Violations
	1.6.4.2. Check CDC Report

	1.6.5. Reset Signal Related Issues
	1.6.5.1. Recovery and Removal Issues

	1.6.6. Small Margin Timing Constraint Failures
	1.6.7. Long Compilation Times

	1.7. Conclusion
	1.8. Document Revision History for AN 584: Timing Closure Methodology for Advanced FPGA Designs

