
synopsys
CUSTOMER EDUCATION SERVICES

IC Compiler 1
Workshop
Lab Guide
20-1-071-SLG-011 2010.12

Synopsys Customer Education Services
700 East Middlefield Road
Mountain View, California 94043

Workshop Registration: 1-800-793-3448

www.synopsys.com

��
Copyright © 2011 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and
proprietary information that is the property of Synopsys, Inc. The software and documentation are furnished under a
license agreement and may be used or copied only in accordance with the terms of the license agreement. No part of the
software and documentation may be reproduced, transmitted, or translated, in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without prior written permission of Synopsys, Inc., or as expressly provided by
the license agreement.

Destination Control Statem ent
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AMPS, Cadabra, CATS, CRITIC, CSim, Design Compiler, DesignPower, DesignWare, EPIC, Formality, HSIM,
HSPICE, iN-Phase, in-Sync, Leda, MAST, ModelTools, NanoSim, OpenVera, PathMill, Photolynx, Physical Compiler,
PrimeTime, SiVL, SNUG, SolvNet, System Compiler, TetraMAX, VCS, Vera, and YIELDirector are registered trademarks
of Synopsys, Inc.

Trademarks (™)
AFGen, Apollo, Astro, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves, Columbia.Columbia-CE, Cosmos, CosmosEnterprise,
CosmosLE, CosmosScope, CosmosSE, DC Expert, DC Professional, DC Ultra, Design Analyzer, Design Vision,
DesignerHDL, Direct Silicon Access, Discovery, Encore, Galaxy, HANEX, HDL Compiler, Hercules, Hierarchical
Optimization Technology, HSIMplus, HSPICE-Link, iN-Tandem, i-Virtual Stepper, Jupiter, Jupiter-DP, JupiterXT,
JupiterXT-ASIC, Liberty, Libra-Passport,Library Compiler, Magellan, Mars, Mars-Rail, Milkyway, ModelSource, Module
Compiler, Planet, Planet-PL, Polaris, Power Compiler, Raphael, Raphael-NES,Saturn, Scirocco, Scirocco-i, StarRC, Star-
SimXT, Taurus, TSUPREM-4, VCS Express, VCSi, VHDL Compiler, VirSim, and VMC are trademarks of Synopsys, Inc.

Service Marks (SM)
MAP-in, SVP Cafe, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license. ARM and AMBA are registered
trademarks of ARM Limited. Saber is a registered trademark o f SabreMark Limited Partnership and is used under license.
All other product or company names may be trademarks of their respective owners.

Document Order Number: 20-1-071-SSG-011
IC Compiler 1 Lab Guide

Synopsys Customer Education Services

IC Compiler GUI Lab 0A-1
Synopsys 20-I-071-SLG-011

IC CompilerTM GUI

This lab has two purposes:

1. To familiarize you with the IC Compiler GUI.

2. To learn how to get help with commands and
variables.

You will work with a design that has been previously
placed by IC Compiler.

After completing this lab, you should be able to:

• Invoke and exit IC Compiler
• Load a saved design
• Configure “layout window”
• Navigate the layout view
• Select and query layout objects.
• Use help, printvar and man to get help and additional

information about commands and variables

Lab
Duration:
45 i t

Learning Objectives

0A

Lab 0A

Lab 0A-2 IC Compiler GUI
Synopsys IC Compiler 1 Workshop

Instructions

Task 1. Start IC Compiler

1. Log in to the UNIX environment with the user id and password assigned by
your instructor.

2. Before invoking IC Compiler, we want to remove a GUI window
configuration file, if it exists

UNIX% rm ~/.config/Synopsys/icc_shell.conf

. This file will exist if you have previously
invoked IC Compiler in this login account – its purpose is to remember the
last GUI window configuration you had before exiting the tool, so that the
configuration will look the same the next time you invoke the tool. For this
lab we need you to start with a default window configuration. If the following
file exists in your home directory, delete it:

Note: This step is NOT necessary during regular use of the tool. It
is ONLY done here to ensure a consistent lab environment

3. From your login or home directory, change your current directory to lab0_gui,
which is the working directory for this lab.

.

UNIX$ cd lab0_gui

4. Start IC Compiler from the UNIX prompt:

UNIX$ icc_shell

The xterm UNIX prompt becomes icc_shell>, the IC Compiler shell
command prompt.

5. Have a look in your current directory. You can type ls –a in a UNIX xterm
window, or in the IC Compiler shell type:

icc_shell> ls

You will see that command and output log files were created
(icc_shell.cmd and .log). The .cmd file records all commands

Note: Log file naming can be defined through variables in the
initialization file, .synopsys_dc.setup.

,
including initialization commands invoked during IC Compiler start-up.
The.log file records commands and command output after tool start-up.

6. Start the GUI. This is the “on demand” (as needed) method:

Lab 0A

IC Compiler GUI Lab 0A-3
Synopsys IC Compiler 1 Workshop

icc_shell> start_gui or gui_start

After a short wait a window labeled IC Compiler - MainWindow.1 is opened.
This window can display schematics and logical hierarchy browsers, among
other things, once a design is loaded.

Note: Instead of invoking the GUI “on-demand”, you can start the
IC Compiler GUI from the UNIX prompt:
icc_shell –gui.

7. Load the placed cell from the risc_chip.mw MilkyWay design library, as
follows:

a. In the MainWindow click on the little yellow “open design” icon
on the top left, or use the menu command: File Open Design …

b. In the Open Design dialog panel, click the yellow folder icon .
The Select Library dialog box opens. MilkyWay libraries are marked
by an orange “L” icon . Select the library folder risc_chip.mw and
click Choose.

c. The middle of the Open Design dialog now shows the stored CELs.
Since there is only one cell (placed) in the list, it should already be
selected (highlighted in blue). Click OK to open it.

A new window labeled LayoutWindow.1 opens.

8. Bring the MainWindow to the foreground and look at the command transcript
near the bottom of the window to answer the following question:

Question 1. What command was executed to open

Check your answer against the answer at the end of this lab.

 the placed cell?
(scroll up until you find it)

 ..

Looking at the transcript is useful to begin to learn IC Compiler’s commands.
Look at the UNIX window where IC Compiler was invoked. Commands can
be executed, and are also echoed, there.

9. Bring the LayoutWindow to the foreground and enlarge or maximize the
window.

Lab 0A

Lab 0A-4 IC Compiler GUI
Synopsys IC Compiler 1 Workshop

10. Press the lower-case [F] key to fit the layout to the larger window.

You are looking at the layout view of the design CEL called placed, which is
part of the risc_chip.mw design library. On the outer perimeter of the layout,
IO pad cells (light blue rectangles) surround the brightly colored center or
core region on all 4 sides. Between the core and the periphery or IO pad area
there are green and red metal rings for power and ground (VDD/VSS). There
are also vertical and horizontal VDD/VSS straps through the core for better

power
distribution. At
the bottom of the
core area there
are two RAM
macros. The core
and periphery
layout, as well as
the power
routing were
defined during
the design
planning phase.
During the
placement phase,
the standard
cells have been
automatically
placed in

horizontal placement rows (the darker blue area above the RAM macros). The
details of the rows and the standard cells may not be visible. Once you know
how to zoom (Task 2) you will better be able to see the standard cells. The
blue area is made up of narrow metal lines running horizontally, VDD/VSS
rails, which distribute power to the standard cells.

Note: The LayoutWindow has its own set of menu entries. Some
of these entries are shared with the MainWindow, while
others are unique to the LayoutWindow. Most of the
physical processing of the design can be done by commands
from this menu system.

Lab 0A

IC Compiler GUI Lab 0A-5
Synopsys IC Compiler 1 Workshop

Task 2. Navigating the Layout View

1. Spend a few minutes to get familiar with the zoom and pan buttons in the
LayoutWindow. While panning and zooming, notice how the yellow rectangle
in the Overview window (the small “context” window in the upper left corner
of the LayoutWindow) identifies the area of the design being displayed.

Hint: A short, descriptive ‘ToolTip’ will pop up when a mouse pointer is held
motionless over a button.

To exit the zoom and pan mode pick the ‘Selection Tool’ (the white arrow
icon) or press the [Esc] key. The cursor returns to an “arrow” or pointer shape.

Question 2. What is the difference between the “magnifier” button with
“2” in it and the button with a “+” in it?

 ..

2. “Hot keys” are also available when the LayoutWindow is active (i.e. currently
selected). Lower-case [F] or [Ctrl F] both correspond to “zoom fit all” (or full
view), for example. [Z] is zoom-in.

3. You can find out about other hot key definitions in two ways: Hover with the
mouse over a button and a “balloon help” will appear showing the name of the
function and the keyboard shortcut. You can also select the pull down menu
Help Report Hotkey Bindings. A new view appears, listing the hot key
definitions. To close this view select Window Close View or [Ctrl W].

Select, Zoom and Pan

Lab 0A

Lab 0A-6 IC Compiler GUI
Synopsys IC Compiler 1 Workshop

4. Some people like to use mouse “strokes” to pan and zoom, instead of using
GUI buttons or keyboard “hot keys”. Try using strokes as follows:

Zoom in on an area of interest: [Z] and [Esc].

Now click and hold the middle mouse button while moving the pointer
straight up or down and holding it there. The stroke menu appears near the
pointer:

Release the middle button and the design should zoom to fit the display
window (“Zoom Fit All”). To zoom in on an area “stroke” (move mouse with
middle button depressed) in a 45° direction upward

Note: In the interest of time, do not attempt this presently, but it is
useful to note that you can query or define your own strokes
by using the commands get_gui_stroke_bindings and
set_gui_stroke_binding. “Hot keys” can be defined
by using gui_set_hotkey.

 (to the left or right) – the
view should zoom-in to a rectangular area defined by the stroke. Stroking 45°
downward zooms out. Stroking in the east/west direction pans the display
such that the start point of the stroke is moved to the center of the window.

5. The keyboard arrow keys can also be used to pan the display
North/South/East/West. Try it.

6. If your mouse has a scroll wheel, it can be used to zoom in/out (2X or ½X)
around the area of the mouse’s pointer.

Lab 0A

IC Compiler GUI Lab 0A-7
Synopsys IC Compiler 1 Workshop

Task 3. Controlling Layer Visibility

You can control what types of objects are visible and/or selectable in the
viewing window through the View Settings panel. In the following steps you
will turn on visibility to some key objects one at a time, to clearly see what
they represent. First make sure that under the Options pull down menu Auto
apply is checked: This way selections are applied immediately without having
to click on the Apply button each time.

a. In the Vis. column, uncheck everything except
Cell. Only the standard-, macro- and IO
pad cells

b. Now check Pin as well. The input, output and
power connection pins of the cells are displayed.

 are displayed.

c. Check Route. All metal routes become visible.
Since the design has not been routed yet, only
power/ground “pre-routes” (from the design
planning phase) are seen. You should see power
supply rings around the core as well as vertical
and horizontal straps through the core area.

d. Check Labels. Cell and instance names become
visible. Expand Labels by clicking on the “+”
icon on the left. Check Pin. Zoom in [Z] on one
of the standard cell instances - its pin names are
now visible. Fit the view to the window [F].

e. Select the Layers tab, which can be used to
“fine tune” the visibility further on a layer-by-
layer basis. At the intersection of the row
labeled “METAL(14)” and the column labeled
“Shape” click on the blue square with diagonal
lines. The blue horizontal METAL (= metal 1)
rails disappear.

f. Make “metal 1” visible again.

g. Select the Objects tab and re-apply the original
visibility settings shown in the panel above.

Question 3. What is the difference between the Vis. (visibility) and Sel.
(selection) columns in the above panel?

 ..

 ..

7. Select the Layers tab and use the colors and fill patterns to answer the
following questions:

Lab 0A

Lab 0A-8 IC Compiler GUI
Synopsys IC Compiler 1 Workshop

Question 4. On what layer name and number are the red horizontal
power straps?

 ...

Question 5. On what layer name and number are the green vertical power
straps?

 ..

8. You can confirm your findings by hovering the pointer over one of the straps.
A “query” window appears, which displays information about the object,
including its layer name.

Task 4. Selecting and Querying Objects

1. Selecting objects

To be able to select objects the mouse cursor must be an arrow, which denotes
“select mode”. If your cursor is not in select mode either click the arrow

button or press the [Esc] key.

:

2. Try selecting different single objects

3.

 with a left mouse click. A selected object
is highlighted in white, and remains highlighted until un-selected, or a
different object is selected.

Unselect all objects

4. Select

 by either clicking on an empty area in the layout, by using
the menu Select Clear, or by typing [Ctrl D].

multiple objects

5. Keep what is selected and select

 in the same area with a left button “drag-and-draw”.
All objects within the drawn rectangle are selected.

additional objects

6. You can

 by holding down the [Ctrl]
key while selecting with the left mouse click.

cycle through

7. Zoom into the blue core area. Select a handful of standard cells by dragging a
selection box around them.

 “stacked” objects (multiple objects placed on top of
each other) by repeatedly clicking the left mouse button until the desired
object is highlighted. Try this by clicking on the corner intersection between
the red horizontal, and green vertical power/ground rings.

Lab 0A

IC Compiler GUI Lab 0A-9
Synopsys IC Compiler 1 Workshop

8. Incase it is difficult to notice the highlighted (selected) objects among other
bright objects, it is possible to reduce the “brightness” of the unselected
objects, thereby increasing the contrast. A “Brightness” control is located at
the top of the View Settings panel.

Reduce the brightness to 50% to see the improved contrast.

9. Querying objects

By default, when the cursor arrow hovers over an object, the object is lightly
highlighted, and a query “summary” window appears in the bottom left,
displaying some key attributes of the object.

:

To obtain a “full query”, select a single standard cell, and query it by typing
lower-case [Q] or by using the menu entry: Select Query Selection. A
window opens and lists all the attribute values of the selected cell.

10. Close the query window by clicking the “Hide” minus sign in its upper right
corner.

11. From the MainWindow or LayoutWindow use File Close Design to close
the current design in the LayoutWindow. If the Close Design dialog box
appears, click on Discard All to close the design without saving it.

12. You are done using the GUI. To close the GUI, while keeping the IC
Compiler session active, type:

stop_gui or gui_stop

The MainWindow is now closed, but the IC Compiler shell is still active in the
UNIX window.

Lab 0A

Lab 0A-10 IC Compiler GUI
Synopsys IC Compiler 1 Workshop

Task 5. Getting Help with Commands and Variables

1. IC Compiler supports command name, variable name, file name and
command option “completion” through the [Tab] key. Try the following in
the IC Compiler command shell window:

h[Tab]e[Tab] –v[Tab] help[Enter]

2. To view the man page on a command or variable you need to enter the exact
command or variable name. Alternatively, you can enter the starting
characters of the command/variable and use command completion to find the
rest. If you are not sure what the exact name is, use help for commands, and
printvar for variables, along with the * wildcard. Here are some examples:

Let’s say you are looking for more information about a certain
optimization command. You don’t remember the exact command name, but
you know it contains the string “syn” (for “synthesis”). To list all commands

help *syn*

that contain this string enter:

From the displayed list of commands, you pick out the one you are interested,
namely, psynopt.

3. To list the available options

help –verbose psynopt
or
help –v psynopt

 for psynopt, use the verbose option:

4. To get a full help manual page – a detailed description of the command and
all of its options, type:

man psynopt
or
man psyno[Tab]

Lab 0A

IC Compiler GUI Lab 0A-11
Synopsys IC Compiler 1 Workshop

5. Now let’s say you need help on a specific variable, but again, you don’t
remember its exact name, but it contains “library”. To list all variables

printvar *library*

containing this string, enter:

From the list you identify the variable of interest, namely
target_library.

Notice that the printvar command also lists the current value

6. To get a full help manual page of the variable, type:

 of each
variable.

man target_library
or
man target_l[Tab]

7. Lastly, you can also get additional help with an error or warning

man PSYN-025

 message,
using the unique message code, for example:

8. Quit the IC Compiler shell:

exit or quit

You have completed the IC Compiler GUI lab 0A.

Lab 0B is optional: If you have some extra time during the workshop, feel free to
return and try out the additional GUI features shown in Lab 0B.

Lab 0A Answers / Solutions

Lab 0A-12 IC Compiler GUI
Synopsys IC Compiler 1 Workshop

Answers / Solutions

Question 1. What command was executed to open

open_mw_cel placed

 the placed cell?
(scroll up until you find it)

Question 2. What is the difference between the “magnifier” button with
“2” in it and the button with a “+” in it?

“+” allows you to select a window to zoom into using the
mouse. The “2” button magnifies 2x around the center of
the current display.

Question 3. What is the difference between the Vis. (visibility) and Sel.
(selection) columns in the above panel?

Visibility is used to turn the display of objects on/off.
Selection is used to control which objects are selectable
when clicking on them. Invisible objects cannot be selected.

Question 4. On what layer name and number are the red horizontal
power straps?

The layer name is METAL3, corresponding to layer number
22. Power nets are defined during design planning.

Question 5. On what layer name and number are the green vertical
power straps?

The layer name is METAL4, corresponding to layer number
26.

More IC Compiler GUI Lab 0B-1
Synopsys 20-I-071-SLG-011

OPTIONAL:
More IC CompilerTM GUI

This lab has two purposes:

1. Explore additional features of the IC Compiler GUI

2. Perform GUI-based timing analysis.

You will work with a design that has been previously
placed by IC Compiler.

After completing this lab, you should be able to:

• Use the pan/zoom history features
• Configure the windows
• Create and manipulate selection lists
• Highlight layout objects
• Invoke the query tool
• Analyze timing paths
• Cross-probe between the layout and schematic

Lab
Duration:
50 i t

Learning Objectives

0B

Lab 0B

Lab 0B-2 More IC Compiler GUI
Synopsys IC Compiler 1 Workshop

Instructions

Task 1. Window Configuration

1. Change your current directory to lab0_gui and invoke the IC Compiler GUI:

UNIX$ cd lab0_gui

UNIX$ icc_shell -gui

2. Load the placed cell from the risc_chip.mw design library:

File Open Design … or .
There are multiple windows within IC Compiler, for example MainWindow
and LayoutWindow (there are more). These top-level windows can have
multiple “views” or sub-windows in them - by default, the LayoutWindow
contains an “Overview” (miniature cell view) window and a “View Settings”
(layer visibility) panel. You can configure these sub-windows and views any
way you like. The sub-windows can be undocked and can “float” anywhere on
your desktop, or can be docked in another location of the window (top, bottom,
left or right). We’ll show you how to do this next.

3. Undock the View Settings panel by right clicking over the top edge of the
panel (over the two horizontal lines), and selecting “Float”. The view is now
stand-alone (floating or undocked) in its own window. Left-click at the top of
the floating panel and drag to move it wherever you like.

4. Dock the panel again by right clicking its top edge and selecting Dock Left.
5. Move the position of the Context window down, below the View Settings

panel, by left-clicking its top banner to “grab and drag” the window down.
Release the mouse button when the window is below the View Settings panel.
You can also use this method to undock and re-dock a window.

6. Close both the Overview and the View Settings windows by clicking their
“Hide” icon in the top right corner or by right-clicking the top edge and
selecting “Hide”. The windows are hidden. This gives you maximum viewing
area for your layout.

7. Re-open the Overview and View Settings windows as follows: Right-click
anywhere in the tool bar at the top of the LayoutWindow (where the pull-down
menu selections are listed). A menu appears listing the available tool-bar
views, followed by the four window views. Select “Overview”. The
Overview window appears on the left. Open the View Settings panel by either
pressing the [F8] hot key or repeating the above step and selecting View
Settings.

Lab 0B

More IC Compiler GUI Lab 0B-3
Synopsys IC Compiler 1 Workshop

8. From the tool bar select the “Window” pull-down menu. Near the bottom is a
list of all open windows. Selecting one brings that window to the foreground.
You can do the same thing with [Ctrl `] - Control plus “back-tick

9. You can have multiple “layout views” displayed in one LayoutWindow. Open
a new layout view by selecting View New Layout View. The new view is
displayed, along with two “tabs” at the bottom, labeled Layout.1 and Layout.2.
You can display the different views by selecting the tab, or by setting up
“cascaded” or “tiled” views (Window Tile Views or Cascade Views).

” (usually
below the “tilde” ~).

10. Maximize one of the two layout views. Optionally, close the other.

Note: Your last window configuration is automatically saved by
IC Compiler and will be restored during your next session.
The window configuration is saved when exiting the tool in
~/.config/Synopsys/icc_shell.conf.

Task 2. Pan and Zoom History

The LayoutWindow maintains a history of pan/zoom views. A view can also be
saved and later recalled. This can be useful while debugging or analyzing results of
large designs.

1. If the “history buttons” shown here do not already appear in the
LayoutWindow tool bar, right-click in the tool bar and select “Zoom and Pan
History”. Three additional “history” buttons are added to the tool bar.

2. If you do not like the default location of the tool-bar buttons, you can change
it. Tool-bar button “groups” can be moved to the left or right by left-clicking
over the double-vertical bars and dragging and dropping in the desired area.

3. Zoom in on an area of interest [Z], then [Esc].

4. Click on the right-most “history” button shown above or select the menu
entry View Zoom Named Zoom and Pan Settings… .

In the dialog box enter the name “myzoom”, click Add and then Close.

5. Return to a full view, by typing lower-case [F] key.

6. To retrieve the saved view, bring up the same dialog box, select “myzoom”
and click on Zoom To. Close the dialog box.

Lab 0B

Lab 0B-4 More IC Compiler GUI
Synopsys IC Compiler 1 Workshop

7. Pan or zoom to several different areas of interest on the layout and then try the

“Go Back” and “Go Forward” buttons to cycle through the view
history.

Task 3. Selection Lists, Highlighting and Querying

1. Selection lists

2. Reduce the brightness to 50% to improve the contrast. The “Brightness”
control is located at the top of the View Settings panel.

:

Zoom into the blue core area of the layout and select four or five standard
cells.

3. Show the selected objects in a list format: Use the Select Selection List
menu entry.

4. The list can be further filtered by using the Select/Deselect buttons: Using the
[Shift] or [Ctrl] key, select all except the first two objects from the selection
list and click the Deselect button to remove them from the list. Notice that
only those two standard cells remain selected in the LayoutWindow.
Keep the selection list open, and the standard cells selected.

5. Highlighting objects

Select one other cell that is not currently highlighted.

:

In the tool bar locate the solid yellow “color” rectangle .
Click on the pull-down menu and select the color red , then click on the “pen”
button to apply the highlight to the selected cells. If the selection list
disappeared bring it back with [Ctrl L]. To see the colored highlights you
must unselect the cells ([Ctrl D] or click an area with no objects). The objects
remain highlighted in red.

Question 1. Does the selection list contain the highlighted objects?

 ..

Click the Close button on the Selection List window to close it.

Clear the highlighted objects by clicking or [Ctrl M].

6. Querying objects

By default, when the cursor arrow hovers over an object, the object is lightly
highlighted, and a query “summary” window appears, displaying some key
attributes of the object.

:

To obtain a “full query”, select a single standard cell, and query it by typing
lower-case [Q] or by using the menu entry: Select Query Selection. A
window opens and lists all the cell’s attributes and attribute values. You may
need to expand the window to the left to see the values of each attribute.

Lab 0B

More IC Compiler GUI Lab 0B-5
Synopsys IC Compiler 1 Workshop

7. Close the query window by clicking the “Hide” minus sign in its upper right
corner.

8. If you do not want to change the current set of selected items, or you want to
query many objects, there is an alternative method. Turn on the “Query tool”

either by clicking on the button, by pressing [Ctrl Q], or by using the
menu item View Mouse Tools Query Tool. The cursor image changes

to .
Now click on any object and you will see information displayed in the “Query
Objects” window, without affecting the currently selected objects.

Close the “Query Objects” window. Exit the query tool by pressing [Esc].

9. Select a few standard cells again. A final way to look for information in a list
of selected cells is with the menu entry Edit Properties or [Ctrl R]. This
will bring up the Properties dialog box shown below.

This dialog can also be used to change

Note: You can also bring up the Properties dialog box by right
clicking the core area and selecting Properties in the pop-
up menu.

 properties of selected objects.

10. Click the right and left
blue arrow buttons to
cycle through the
properties of each item
in the selection one at a
time. Check the “All”
box to see the properties
that are identical for all
the selection items.

11. Cancel the Properties
dialog box, unselect all
objects [Ctrl D], and fit
the layout view to the
window [F]. Return the
“brightness” to 100%.

Lab 0B

Lab 0B-6 More IC Compiler GUI
Synopsys IC Compiler 1 Workshop

Task 4. Analyze Timing Paths

IC Compiler contains many advanced and easy to use timing analysis and
visualization features. We will discuss some useful ones here.

1. Highlighting critical paths

2. In the dialog that appears, click on Reload.

:

Select the pull-down menu shown on the right and click
on Path Slack.

3. Click OK in the Warning box.

4. Wait a little for the Paths Slack dialog box to open,
then click OK.

You should now see colored “fly-lines” in your layout
window. The most critical paths (least slack) are
highlighted in pink, then red, etc. The most critical path
is the one that ends at the IO pad named
RESULT_DATA_iopad_0 in the lower right.
Keep the paths highlighted.

5. Cross-probing between the layout and schematic

6. Bring the MainWindow to the foreground [Ctrl `] and
maximize it.

:

Select the IO pad mentioned above,
RESULT_DATA_iopad_0.

7. Select Schematic New Path Schematic View
Of Selected Logic. A schematic window opens,
showing just the selected cell – an IO pad “buffer”.

8. Double click the top bar of the schematic window to
enlarge the view, and fit [F] the schematic to the
window.

If not already selected (white), select the displayed gate, then right click and
select “Next Fanin/Fanout Level”. Use [F] to fit the schematic to the
window. You should see one additional level of fanin and fanout to/from the
single gate.

Now select the new gate fanning in to our original gate. Right click and select
“Next Fanin/Fanout Level”. You will see an additional level of fanin added.
Instead of selecting the gate, you can also just select one of the pins (arrows)
and perform the same function. This is useful if you want to expand the path
through one particular input pin of a multiple-input gate. You can also double-
click the input or output pin to display the next fanin or fanout level. During
actual analysis you would continue expanding the path to meet your needs.

Lab 0B

More IC Compiler GUI Lab 0B-7
Synopsys IC Compiler 1 Workshop

9. Unselect all objects in the schematic by clicking in the black background,
away from any object, or by pressing [Ctrl D]. Notice that there are no
selected (white) objects in the layout view.

10. In the schematic, select the original right-most buffer
RESULT_DATA_iopad_0. Notice in the layout view that the same IO pad
cell is selected (highlighted in white).

11. In the schematic add the fanin nets, pins and gates to your selection using
either [Ctrl], or by dragging a left-mouse rectangle around them.
Notice that these objects are also highlighted in the layout.

12. In order to see this entire critical path, select just the original gate in the
schematic, right click and select Add Logic Paths… In the dialog that
appears, simply select OK. This will display the worst (critical) path to the
selected logic gate.

13. Generating a schematic for the entire design

In the MainWindow press [Ctrl D] to clear all selections, then select the menu
Schematic New Design Schematic View.
A new schematic window opens containing the top-level schematic of the
current design, placed.

:

14. The schematic contains a single hierarchical instance I_RISC_CORE, plus a
handful of logic gates.

Click on the rectangular I_RISC_CORE bounding box to select it (located in
the left part of the schematic). Check that the “Cell” name that appears in the
lower right corner confirms that I_RISC_CORE is selected. Double click
inside the I_RISC_CORE boundary to traverse down the hierarchy and view
its schematic.

15. Use the Up Arrow and return to the top schematic level.

16. Using the TimingWindow for timing analysis

In the MainWindow select Window New Timing Analysis Window… .

Click “OK” in the Select Paths dialog box.

A new window, labeled TimingWindow opens, in addition to the two windows
already open.

:

Let’s examine the overall timing quality of the design by displaying a list of
path slacks for analysis.

Lab 0B

Lab 0B-8 More IC Compiler GUI
Synopsys IC Compiler 1 Workshop

17. Maximize the TimingWindow by double-clicking the title bar, or by selecting
the “square” button in the upper right corner.

Expand the slack list window to the right by placing your cursor arrow over
the right border of the window. The cursor changes shape (show below). Click
the left mouse button and drag the boundary to the right.

You can left click and drag the gray column header boundaries to resize the
column widths if the field values are not fully displayed. You can re-arrange
the order of the columns by left-clicking a column header and dragging it to
the desired location. Click inside a gray column header and a sort arrow
appears allowing you to sort the column’s data.

18. Select the path with the smallest

Examine the LayoutWindow and MainWindow and observe that the path is
highlighted in white.

 Slack in the list by left-clicking it. The line
should highlight to a blue color.

Lab 0B

More IC Compiler GUI Lab 0B-9
Synopsys IC Compiler 1 Workshop

19. There are controls for generating histograms, schematics and timing profilers
at the bottom of the TimingWindow:

Click the Schematic button and a schematic of the highlighted path appears in
a new window in the gray area of the TimingWindow, or in a new tab. You can
select and open multiple schematic windows (two are open in the example
below and have been re-arranged to fit next to each other).

Click the Histogram button and “OK” the dialog box. A set of timing slack
histogram bars appears. Select one of the histogram bars and the list window
populates with all the paths in that bar. Selecting one of these paths updates
the selection in the master path slack list and the path display in the
LayoutWindow.

Note: The histogram tool is similar to that available from the
Design Compiler and PrimeTime GUIs.

Note: To clear a highlighted path, select [Ctrl D] as usual.

Lab 0B

Lab 0B-10 More IC Compiler GUI
Synopsys IC Compiler 1 Workshop

The path inspector can be started by pressing the “Inspector” button at the
bottom of the TimingWindow.
Note

: You must first select a path that you wish to “inspect” from the list on
the left.

This also opens a schematic window, along with another window that can
display details about the path (by selecting the appropriate tab): The Clock tab
lists details about the launching and capturing clock of the path; Data Path
lists timing and additional details along the entire path; Crosstalk lists related
delay and parasitic information.

Task 5. Window Management

1. A final note on window management: It is possible to have multiple
MainWindows, LayoutWindows and TimingWindows open at the same time.
You can also open multiple designs at the same time, and switch between
them.

If you have not already done so, try the [Ctrl `] (control back-tic) sequence
to cycle through these windows, similar to an ALT-TAB in an MS Windows
interface.

If you have multiple tabs (or views) within a window, you can cycle through
them using [Ctrl Tab].

If you have problems with windows disappearing, e.g. a Properties window
that vanishes under a LayoutWindow, check the controls in your Linux/Unix
window manager. Find a control to keep “Secondary windows” on top.

2. From the MainWindow or LayoutWindow use File Exit Discard All to
exit IC Compiler.

Lab 0B

More IC Compiler GUI Lab 0B-11
Synopsys IC Compiler 1 Workshop

You have completed the optional GUI lab.

Lab 0B Answers / Solutions

Lab 0B-12 More IC Compiler GUI
Synopsys IC Compiler 1 Workshop

Answers / Solutions

Question 1. Does the selection list contain the highlighted objects?

The list tracks what is selected

 at any time, not the
highlighted objects.

IC Compiler Data Setup & Basic Flow Lab 1-1
Synopsys 20-I-071-SLG-011

Icc_

IC CompilerTM
Data Setup & Basic Flow

This lab has two purposes:

1. Walk you through the “data setup” process of
creating and maintaining a Milkyway database to
hold your design data.

2. Run a complete basic flow, from loading a floorplan
through routing.

After completing this lab, you should be able to:

• Create a Milkyway database for your design
• Attach reference libraries to your design library
• Load TLU+ models for accurate parasitics modeling
• Read in a netlist
• Apply sdc constraints
• Apply timing and optimization controls
• Load a DEF format floorplan
• Place and optimize the design using place_opt
• Build and optimize a clock tree for the design using
clock_opt

• Route and optimize the design using route_opt
• Generate and interpret a timing report
• Load a previously saved design in a new session

Lab
Duration:
60 i t

Learning Objectives

1

Lab 1

Lab 1-2 IC Compiler Data Setup & Basic Flow
Synopsys IC Compiler 1 Workshop

Introduction

In this lab you are provided with netlist, timing constraints and floorplan data for a
design called RISC_CHIP. You will create a Milkyway design library from the
provided design data in the first part of the lab. In the second part of the lab, you
will place the standard cells, create the clock tree and route the RISC_CHIP design
using the basic flow.

This design is very simplistic and is only meant as a vehicle for observing the basic
flow.

Answers / Solutions
There is an ANSWERS / SOLUTIONS section at the back of each lab. You
are encouraged

 to refer to this section to verify your answers.

Relevant Files and Directories
All files for this lab are located in the lab1_data_setup directory under your home
directory.

lab1_data_setup/

 .synopsys_dc.setup Read by IC Compiler upon startup

 design_data/

RISC_CHIP.v RISC_CHIP verilog gate level netlist.

RISC_CHIP.def RISC_CHIP floorplan in DEF.

RISC_CHIP.sdc RISC_CHIP timing constraints.

 scripts/

opt_ctrl.tcl Timing and optimization controls.

zic_timing.tcl A script used to check zero-interconnect
timing constraints.

derive_pg.tcl Create logical P/G connections.

 .solutions/

run.tcl A run script with all the commands
executed in this lab.

Lab 1

IC Compiler Data Setup & Basic Flow Lab 1-3
Synopsys IC Compiler 1 Workshop

Instructions

Task 1. Create a Milkyway library

1. Change your current directory to lab1_data_setup and look at the contents of
the directory.

UNIX% cd ../lab1_data_setup

UNIX% ls –a

You should see the directories listed on the previous page, and
the .synopsys_dc.setup file.

2. Use a UNIX text editor or viewer to look at the contents of
the .synopsys_dc.setup file.

3. At the bottom of the file, we have created the following user-defined

#--
RISC_CHIP setup variables
#--

 variables
to help document and simplify the data setup process:

set my_mw_lib risc_chip.mw

set mw_path “../ref/mw_lib”

set tech_file “../ref/tech/cb13_6m.tf”

set tlup_map “../ref/tlup/cb13_6m.map”

set tlup_max “../ref/tlup/cb13_6m_max.tluplus”

set tlup_min “../ref/tlup/cb13_6m_min.tluplus”

set top_design “RISC_CHIP”

set verilog_file “./design_data/RISC_CHIP.v”

set sdc_file “./design_data/RISC_CHIP.sdc”

set def_file “./design_data/RISC_CHIP.def”

set ctrl_file “./scripts/opt_ctrl.tcl”

set derive_pg_file “./scripts/derive_pg.tcl”

If you lose track of what these variables contain as you proceed, you can
easily query them within the icc_shell using the printvar command.

Lab 1

Lab 1-4 IC Compiler Data Setup & Basic Flow
Synopsys IC Compiler 1 Workshop

4. The section above the user-defined variables contains the logic library settings
which were discussed in the lecture:

lappend search_path ../ref/db ../ref/tlup
set_app_var target_library “sc_max.db”
set_app_var link_library “*sc_max.db io_max.db \
 ram16x128_max.db”

set_min_library sc_max.db -min_version sc_min.db
set_min_library io_max.db -min_version io_min.db
set_min_library ram16x128_max.db -min_version \
 ram16x128_min.db

Above that we have defined some aliases which will be used later in this lab.
There are also settings that control the creation of log files.

Note: These tool variables can be applied in any order, not necessarily the
order shown here.

5. Exit the text editor or viewer.

6. Start IC Compiler from the UNIX prompt:

UNIX% icc_shell

IC Compiler starts in the xterm window. All output is also logged to the file
icc_shell.log.* . This logging was configured in
the .synopsys_dc.setup file.

7. Verify that the .synopsys_dc.setup file was indeed read in, by querying
one of the user-defined variables:

printvar sdc_file

8. Start the GUI. The MainWindow will appear after a short while:

start_gui

Note: Or just type “gui”, a workshop-provided Tcl-procedure !

Lab 1

IC Compiler Data Setup & Basic Flow Lab 1-5
Synopsys IC Compiler 1 Workshop

9. Create the design library:

a. Use the MainWindow menu
File Create Library … to bring
up the Create Library dialog box.

b. Use the variables already defined
for the library and tech file

c. Attach reference libraries to your

 names.

design library:
Click the Add… button.
Double-click to move up one
level, then double-click ref followed
by mw_lib.
Select the standard cell library “sc”
and click OK to add it to the list.

d. Add the “io” and “ram16x128”
libraries as well.

e. Select the “Open library” check
box to open the design library after
it is created.

f. Click OK.

Note: The Warning about
missing “CapModel
sections” is expected. We
will load TLU+ files later.

The following command is the equivalent of the GUI operation above:

create_mw_lib -technology $tech_file -mw_reference_library \
 “$mw_path/sc $mw_path/io $mw_path/ram16x128” \
 -bus_naming_style {[%d]} –open $my_mw_lib

10. Type the following in another xterm window, or in the IC Compiler shell, and
note the contents of the newly created UNIX directory risc_chip.mw (the
design library).

UNIX% ls –a risc_chip.mw OR

icc_shell> ls risc_chip.mw

Note: You should see three lib* files and a .lock file.

[%d

Lab 1

Lab 1-6 IC Compiler Data Setup & Basic Flow
Synopsys IC Compiler 1 Workshop

Task 2. Load the Netlist, TLU+, Constraints and
Controls

1. Before reading in the Verilog netlist make sure the design library is open: An
easy way to do so is by checking if the File Open Library … entry is
grayed out. If it is, this confirms that a design library is currently open.

2. Select File Import Designs … to bring up the Import Design dialog box.

3. Under Input format select verilog.

4. Click Add … then browse to select the file design_data/RISC_CHIP.v
and Open.
Under Top design name enter $top_design (or RISC_CHIP).
Click OK.

The following command is the equivalent of the GUI operation above:
import_designs $verilog_file -format verilog \

 -top $top_design

The Verilog netlist is read in and a LayoutWindow opens, displaying all the
netlist cells stacked on top of each other at the origin. The larger IO pad and
macro cells are shown in light blue. The much smaller standard cells are in
light purple (you may need to zoom in to the lower left corner to see them).

Question 1. How has the UNIX content of the design library changed?

 ...

 ...

 ...
Check your answer against the answer at the end of this lab.

Lab 1

IC Compiler Data Setup & Basic Flow Lab 1-7
Synopsys IC Compiler 1 Workshop

5. From the MainWindow use the menu File Set TLU+ … to bring up the
Set TLU+ dialog box.

Click the browse button, then double-click as needed to locate the
ref directory. Enter paths to the files shown below.

Click OK to load the TLU Plus parasitic files.

Note: The following command is the equivalent of the GUI operation above:

set_tlu_plus_files -max_tluplus $tlup_max \

 -min_tluplus $tlup_min \

 -tech2itf_map $tlup_map

6. Check the physical and logical libraries for consistency:

Note: We will do a default check instead of the recommended complete
check (set_check_library_options –all), which would
include checks related to UPF power constraints, multi-corner multi-
mode, and CCS current modeling. These checks would generate many
warnings and errors that do not apply to our libraries.

check_library

There are two messages that are of interest:

“Number of cells missing in logic library : 19”

This message lists feed-through, power pad and substrate tap cells. These
cells are only used in the physical layout and are therefore not needed in a
“logic” library. This message can be safely ignored.

“Number of cells with missing or mismatched pins in
libraries: 12”

This message points out that the listed cells have mismatched “pin types”. The
logic library lists them as type “signal”, while the physical library lists

Lab 1

Lab 1-8 IC Compiler Data Setup & Basic Flow
Synopsys IC Compiler 1 Workshop

them as “ground” or “power”. These cells are also physical-only cells, and
since the physical

Note: If the above check were to list any missing or mismatched

 library types are correct, we can safely ignore this message
as well.

standard
cells, macro or IP cells, or IO pad

7. Check that TLU+ files are attached and that they pass three sanity checks:

 cells, then the libraries would
potentially need to be modified to correct the situation.

check_tlu_plus_files

You should see a listing of the files for max_tlu+, min_tlu+ and
mapping_file and all sanity checks should say [Passed!].

8. Verify that the specified link libraries have been loaded:

list_libs

Note: You should see the six logic (db) libraries (max and min) that were
specified by set_app_var link_library and
set_min_library, as well as two “generic” logic libraries, which
are always loaded by default: gtech.db and standard.sldb.

9. Define the “logical” connections between power/ground pins and nets.

source $derive_pg_file

check_mv_design -power_nets

There should be no “unconnected” power or ground pins.
Note: The contents of the above file is shown below. Besides VDD and VSS,

this design has two additional P/G signals that are used in the
periphery area: VDDO/VSSO, and VDDQ/VSSQ:

derive_pg_connection -power_net VDD -power_pin VDD \
 -ground_net VSS -ground_pin VSS

derive_pg_connection -power_net VDDO -power_pin VDDO \
 -ground_net VSSO -ground_pin VSSO

derive_pg_connection -power_net VDDQ -power_pin VDDQ \
 -ground_net VSSQ -ground_pin VSSQ

derive_pg_connection -power_net VDD -ground_net VSS -tie

Lab 1

IC Compiler Data Setup & Basic Flow Lab 1-9
Synopsys IC Compiler 1 Workshop

10. Apply the top level design constraints

read_sdc $sdc_file

:

The next several commands are recommended to verify key constraints, or to
get specific information about key constraints.

11. Check if any key timing constraints (for example clocks, input/output
constraints) are missing:

check_timing

Note: The check should not give any “Warning” or “Error” messages.
“Information” messages followed by a “1” means that there are no
missing or inconsistent constraints.

12. Check to see what “timing exception” constraints are applied to your design.
These include false and multicycle paths, as well as asynchronous min- and
max-delay constraints. These constraints are an “exception” to the default
“single-cycle” timing behavior – it is useful to know if your design contains
any of these timing exceptions, and where they are being applied:

report_timing_requirements

Note: There should be no timing exception constraints reported.

13. Check to see if timing analysis was disabled along any paths. If disabled
timing arcs exist, you would probably want to check with the synthesis group
if they are still required during the physical design phase:

report_disable_timing

Note: Since no paths are listed there are no disabled timing paths.

14. Check to see if the design has been configured for a specific “mode” or “case”,
for example “functional” versus “test” mode. This is done by constraining a
control pin or port to a constant logic 0 or 1 during timing analysis and
optimization only, not “hard-wired”. This is helpful to confirm if your design
is in the correct “mode” for physical design optimizations:

report_case_analysis

Note: Since no pins are listed there are no constants applied.

Lab 1

Lab 1-10 IC Compiler Data Setup & Basic Flow
Synopsys IC Compiler 1 Workshop

15. Verify that the clocks are appropriately modeled:

report_clock

report_clock –skew

Note: The report_clock output confirms that the clock is not
“propagated” (otherwise there would be a “p” in the Attributes
column). This is what you want prior to clock tree synthesis. The
clock_skew report confirms that clock tree effects (insertion delay,
skew, transition time) are being modeled.

Question 2. What is the combined modeled effect of skew, jitter and
margin for setup time?
(Hint: “Minus Uncertainty” relates to setup time)

 ...

16. Apply some timing and optimization controls which are specified
in ./scripts/opt_ctrl.tcl:

Note: Most of these settings are discussed in the Appendix of Unit 1. Some
are discussed in later Units. Do not spend time here trying to
understand them:

source $ctrl_file

17. Run a “zero-interconnect” (zic) timing report. Recall from the lecture that the
ZIC mode sets the capacitive load of wires to zero. Try using “file name
completion” inside the icc_shell, using the [Tab] key.

source sc[TAB]z[TAB]

The above file scripts/zic_timing.tcl contains:
set_zero_interconnect_delay_mode true
redirect –tee zic.timing { report_timing }
set_zero_interconnect_delay_mode false

18. The above redirect -tee command displays the timing report on the
screen and saves it to a file. You can look at the contents of that file by
executing a UNIX “cat”at the icc_shell prompt:

exec cat zic.timing

Scroll up and look at the entire timing report. There are three paths listed –
one for each applicable “Path Group” called INPUTS, OUTPUTS and clk.

Lab 1

IC Compiler Data Setup & Basic Flow Lab 1-11
Synopsys IC Compiler 1 Workshop

These path groups were defined in the timing/optimization control file that
was applied a couple of steps above, and will be explained in a later unit.

Question 3. Does the constrained design pass the “ZIC” sanity check?

 ...

19. The “scan enable” signal (scan_en) was defined as an ideal network (see
$sdc_file) to prevent synthesis from buffering this signal. Remove the
ideal network definition so that it will be buffered during physcial design:

remove_ideal_network [get_ports scan_en]

20. Save the cell and notice the new binary files under risc_chip.mw/CEL:

save_mw_cel –as RISC_CHIP_data_setup

Congratulations! You have completed “data setup”. In the next few tasks you
will take your design through the very basic steps of design planning,
placement, clock tree synthesis and routing. You will explore each of these
design phases and associated commands in much greater detail in the
upcoming workshop Units.

Task 3. Basic Flow: Design Planning

For this lab we have provided you with a predefined floorplan file, in standard DEF
format. This file can be generated by IC Compiler, after the design planning phase,
or by a third party design planning tool.

1. Read in the provided DEF file:

read_def $def_file

Note: You may also use the GUI: File Import Read DEF…
to read ./design_data/RISC_CHIP.def.

2. Press [F] in the LayoutWindow to refresh the view. You should now see the
floorplanned design.

3. Ensure that standard cells will not be placed under the power and ground
metal routes (this constraint is not part of DEF):

set_pnet_options -complete {METAL3 METAL4}

Lab 1

Lab 1-12 IC Compiler Data Setup & Basic Flow
Synopsys IC Compiler 1 Workshop

4. Save the design cell and notice the new binary files under risc_chip.mw/CEL:

save_mw_cel –as RISC_CHIP_floorplanned

Task 4. Basic Flow: Placement

1. Place and optimize the design for timing, and generate a timing report:

place_opt

redirect -tee place_opt.timing {report_timing}

Question 4. Does the placed design meet timing?

 ...

2. In the LayoutWindow, zoom in and take a look at the standard cell placement.

Question 5. Would you call this a “core limited” design?

 ...

Analyze congestion :
Select the dropdown menu to the right of the
icon. If you don’t see the icon, click on the >>
to extend the tool bar.

Select “Global Route Congestion” from the
dropdown, then select “Reload”.

A dialog box appears, which contains the command to be executed for
congestion analysis. In the “(Re)Calculate Global Route Congestion Map
Data” field, make sure that the command below is listed:

report_congestion -grc_based -by_layer \
 -routing_stage global

Click “OK”.

The congestion “heat map” is shown in the layout. There are 37 edges of 0
“overflow”, which means that there are just enough routing tracks for the
required metal traces.

3. Close the congestion map by clicking on the small “x” in the upper right
corner of the congestion dialog box.

Lab 1

IC Compiler Data Setup & Basic Flow Lab 1-13
Synopsys IC Compiler 1 Workshop

4. Save the design cell:

save_mw_cel –as RISC_CHIP_placed

Task 5. Basic Flow: CTS

1. You will be using default settings to generate the clock tree. However, in
order to allow IC Compiler to calculate the actual clock skews during clock
tree synthesis, instead of incorporating the estimated

remove_clock_uncertainty [all_clocks]

 skew from the
constraints, remove the “clock uncertainty” first. Also, enable hold-time
fixing. We will discuss this in greater detail in the CTS unit.

set_fix_hold [all_clocks]

clock_opt

redirect -tee clock_opt.timing {report_timing}

Question 6. Is the timing still OK?

 ...

2. Display the clock tree: Use the LayoutWindow menu Clock Color By
Clock Trees to bring up the “visual mode” dialog box.

Click “Reload”.

In the dialog box that appears, make sure the Source Pin Name “clk” is
selected (highlighted in blue).

At the bottom of the dialog box select the box “All Levels, Types”.

Click OK.

The clock tree metal interconnects (or routes), as well as the standard cells, IO
pad and macro cells connected to the clock tree, are highlighted. Notice how
the clock tree starts at the IO pad cell “clk_iopad” (top edge of the periphery,
on the right), then connects to all the registers (“sdnrq#” or “sdcrq#”) and
macro cells (zoom in, or hover your cursor over a cell to see its name).

3. Remove the clock tree highlight by closing (“x”) the visual mode window.

4. Save the design cell:

save_mw_cel –as RISC_CHIP_cts

5. We still need to route the design, but first:
Exit IC Compiler by clicking File Exit Discard All, or typing exit or
quit and OK at the ic_shell prompt. We’ll explain why we did this next…

Lab 1

Lab 1-14 IC Compiler Data Setup & Basic Flow
Synopsys IC Compiler 1 Workshop

Task 6. Basic Flow: Routing

The reason for exiting IC Compiler in the previous step is to have you go through
the steps of starting a new session, re-applying specific settings, and continuing
from where you left off previously.

1. Invoke IC Compiler’s GUI:

UNIX% icc_shell -gui

2. Since the design library has already been created, and you saved the layout
cell after CTS, all you have to do is load the RISC_CHIP_cts cell from the
risc_chip.mw design library, as follows:

a. In the MainWindow click on the little yellow “open design” icon
on the top left, or use the menu command: File Open Design …

b. In the Open Design dialog panel, click the yellow folder icon .
The Select Library dialog box opens. Select the library folder
risc_chip.mw and click Choose.

c. Select RISC_CHIP_cts and click OK to open it.

3. Re-apply the timing and optimization controls, which were applied during
data setup. This is required because some of the settings are applied
using variables

source $ctrl_file

. In general, variable settings are not saved with the design cell
– they remain set during the current IC Compiler session. After exiting and
re-invoking IC Compiler, the variables are reset to their original default values:

4. Now we are ready to continue to route the design. This will take care of all
the signal nets (the clock nets were already detail-routed by clock_opt):

route_opt

Zoom in and take a look at some of the detailed routing.

Lab 1

IC Compiler Data Setup & Basic Flow Lab 1-15
Synopsys IC Compiler 1 Workshop

5. Generate a timing report. You should see positive slacks:

Note: Since the output of this report can be long we will use a helpful user-
created command “view”. It opens a separate window in which the
output can be conveniently scrolled and searched. The view command
is a TCL “procedure” that was defined for this workshop. It is not a
standard command available in IC Compiler. This procedure, along
with several others, is defined at ../ref/tools/procs.tcl, and
is “sourced” in the .synopsys_dc.setup.

view report_timing -nosplit; # OR use aliases:

v rt

Note: Aliases are defined in the .synopsys_dc.setup file.

6. By default timing reports show maximum delay or setup timing. Generate a
min-delay or hold timing report. You should also see that there are no hold
violations:

v rt –delay min

7. Generate physical design statistics:

report_design –physical

Note: This report includes information about the design’s utilization
percenatge, congestion (overflow), etc.

8. Save the design.

save_mw_cel -as RISC_CHIP_routed

9. Quit the IC Compiler shell

exit or quit

You performed all the required data setup steps, and have run
the RISC_CHIP design through the basic flow of IC Compiler!

Lab 1 Answers / Solutions

Lab 1-16 IC Compiler Data Setup & Basic Flow
Synopsys IC Compiler 1 Workshop

Answers / Solutions

Question 1. How has the UNIX content of the design library changed?

It now contains a CEL sub-directory that holds the binary
files for RISC_CHIP – the top design name that was saved
with import_designs.

Question 2. What is the modeled combined effect of skew, jitter and
margin for setup time?
(Hint: “Minus Uncertainty” relates to setup time)

The total effects of (skew + jitter + margin) for setup timing
is modeled by a “Minus Uncertainty” of 0.5 ns. During
timing analysis (prior to clock tree synthesis), IC Compiler
will move all capturing clock edges 0.5ns earlier, thereby
reducing the effective clock period by that amount for setup
timing.

Question 3. Does the constrained design pass the “ZIC” sanity check?

You will see timing for three different paths reported. The
INPUTS path group contains all the paths between primary
input ports and registers; The OUTPUTS path group
contains paths from registers to primary output ports; The
clk group contains register-to-register paths.

With ZIC timing you expect to see positive slack, or at
worst, a small violation. The OUTPUTS group has a small
negative slack of around 1% of the required path delay.
Placement, CTS and/or routing optimizations should be able
to fix this violation. Therefore, the netlist passes the sanity
check.

Question 4. Does the placed design meet timing?

Yes. Notice that the small “zero-interconnect” timing
violation is gone. All paths have a positive slack now.

Question 5. Would you call this a “core limited” design?

No, it is pad limited – the size of the chip is determined by
the large number of pads, not the number of standard cells
and macros.

Question 6. Is the timing still OK?

Yes, all paths have positive slack.

Design Planning Lab 2-1

Synopsys 20-I-071-SLG-011

Design Planning

After completing this lab, you should be able to:

• Define the core and placement row structure

• Define locations for signal, P/G and corner pads

• Insert filler pad cells

• Manually place a few macros

• Apply macro placement constraints

• Place macros and standard cells using “virtual flat
placement”

• Analyze congestion

• Create power/ground rings around groups of macros

• Complete the power/ground rings and straps using
Power Network Synthesis (PNS)

• Analyze IR drop using Power Network Analysis (PNA)

• Analyze timing

Lab Duration:
100 minutes

Learning Objectives

2

Lab 2

Lab 2-2 Design Planning

Synopsys IC Compiler 1 Workshop

Introduction

The purpose of this lab is for you to become familiar with the design planning
capabilities in IC Compiler. For this lab you will use a slightly larger version of
ORCA, which is at the chip-level and includes IO pad cells as well as many more
macros. This makes the design planning steps more interesting.

Answers / Solutions
There is an ANSWERS / SOLUTIONS section at the back of this lab. You
are encouraged

Relevant Files and Directories

 to refer often to this section to verify your answers, or to obtain
help with the execution of some steps.

All files for this lab are located in the lab2_dp directory under your home directory.

lab2_dp/

 orca_lib.mw/CEL

orca_setup The ORCA design after “data setup”, saved
in Milkyway format.

design_data/ Contains the ORCA design input data

ORCA_2.v Second-pass Verilog netlist

ORCA_2.sdc Second-pass SDC timing constraints

scripts/ Contains various floorplanning scripts

2ns_pass_setup.tcl Script to perform 2nd pass data setup

connect_pg.tcl Logically connect all P/G pins to nets

insert_pad_filler.tcl Insert pad fillers

keepout.tcl Placement keepout for all macros

macro_place_cons.tcl Macro placement constraints

macro_pg_rings.tcl Create P/G rings around macro groups

opt_ctrl.tcl Timing and optimization controls

pad_cell_cons.tcl Define pad cell locations

pns.tcl Power network constraints/synthesis

preplace_macros.tcl Place three macros connected to IO pads

If you encounter problems or get stuck, a complete command script is available
to help you recover: .solutions/run.tcl

Lab 2

Design Planning Lab 2-3

Synopsys IC Compiler 1 Workshop

Instructions

Task 1. Load the Design

1. Change to the lab2_dp directory, invoke IC Compiler and start the GUI:

UNIX% cd lab2_dp

UNIX% icc_shell -gui

2. Open the orca_setup cell from the orca_lib.mw design library.

Note: This cell has gone through “data setup”.

3. Take a look at the LayoutWindow. The large greenish-blue rectangles are the
macro and IO pad cells, and the small purple rectangles in the lower left
corner (zoom in if you want to see them more clearly), are the standard cells.
All of these cells are instantiated cells in the netlist. They are all stacked on
top of each other at the origin (0,0).

4. Apply timing and optimization controls which are specified
in ./scripts/opt_ctrl.tcl:

Note: Most of these settings are discussed in the Appendix of Unit 1. Some
are discussed in later Units. Do not spend time here trying to
understand them:

source scripts/opt_ctrl.tcl

5. Switch to the Design Planning task menu in the LayoutWindow by selecting:
File Task Design Planning

Task 2. Initialize the Floorplan

1. The logical netlist from synthesis does not contain physical-only cells such as
power and ground pad cells or corner pad cells. You have to therefore create
these extra cells before being able to physically place them in the periphery
area of your chip. Create the corner and P/G cells and define all pad cell
positions using a provided script:

Hint: When typing use the [Tab] key for command/option/file completion.

source –echo scripts/pad_cell_cons.tcl

Look at the log output to verify that these cells have been created and
constrained without any error or warning messages.

In a separate UNIX window look at the above script to help you answer the
following questions. Check your answers against the solution in the back.

Lab 2

Lab 2-4 Design Planning

Synopsys IC Compiler 1 Workshop

Question 1. What is the command to create a pad cell called VDD_TEST
using the reference cell pvdi? (Do not run this command!)

 ..

Question 2. What “side” is used to define the location of the upper-right
corner cell (cornerur)?

 ..

2. Initialize the floorplan:

Select FloorplanInitialize Floorplan…
Change the Core utilization to 0.8 (80%).
Change the Core to left/right/bottom/top spacing to 30.
Click OK.

3. Fit [F] the LayoutWindow and have a look at the chip’s core and periphery
areas. The blue hash-marked rectangles outside the chip along the top edge are
the unplaced macro cells. The purple objects along the right edge are all the
standard cells.

Note: The corner cells are easily visible – look at the large blue
square that takes up the full layout view (labeled pfrelr).
There are four groups of four P/G pads placed in the middle
of each side.

4. Zoom into the periphery area of the chip and notice that the spacing between
all the pads is about equal.

Question 3. Will the pads always be spaced equally? Explain.

 ..

 ..

 ..

5. Insert the pad fillers to fill the gaps between the pads. Depending on the
technology and library being used, this may be needed for N- or P-well and/or
for power/ground pad ring continuity. To keep the number of pad filler cells
required to a minimum, specify the larger filler cells first in the list. Otherwise,
a 1,000 um space will get filled with 200 x 5 um width cells, instead of one
1,000 um width cell. Enter the command in the box below or source the
provided script scripts/insert_pad_filler.tcl:

insert_pad_filler –cell "pfeed10000 pfeed05000 \
pfeed02000 pfeed01000 pfeed00500 pfeed00200 \
pfeed00100 pfeed00050 pfeed00010 pfeed00005"

Lab 2

Design Planning Lab 2-5

Synopsys IC Compiler 1 Workshop

6. Zoom into the space between two pad cells and notice the filler cells that have
been inserted.

7. Make the “logical” connection (no physical routing) between the
power/ground signals and all power/ground pins of the I/O pads, macros and
standard cells, by executing the following script:

source –echo scripts/connect_pg.tcl

Note: There are 3 different power supplies in this design: VDD,
VDDQ and VDDO. The latter two are used in the periphery
of the chip.

8. Build the PAD area power supply ring:

create_pad_rings

Zoom into the area between the pads to see that metal routes have been added,
over the filler cells, to connect the existing power routes within each pad cell
to form continuous P/G pad rings.

9. Save the design as “floorplan_init”:

save_mw_cel –as floorplan_init

Task 3. Preplace the Macros Connected to I/O Pads

In this task you will identify the macros that are connected to I/O pad cells and you
will manually place them in the core area such that their connections to the I/O pads
are as short as possible.

1. Zoom in to see the top periphery area shown in Figure 1 below.

2. Identify macros that connect to I/O pads, as follows:

Choose Select Cells By Types…
Click the Uncheck All button in the top (Cell Type) section of the dialog box.
Select the Macro cell type check box.
Click the Select All button in lower left corner of the dialog box.
Click OK.
Notice that all the macros are now selected – highlighted in white.

Select the Flylines button from the top banner section of
the LayoutWindow.

In the “Show flylines” panel that appears on the right side of the window click
on the pull-down menu and choose Selected to IO and Apply.

Lab 2

Lab 2-6 Design Planning

Synopsys IC Compiler 1 Workshop

Reduce the “brightness” to 50% or less to better see the three flylines. The
three lower left macros show connections to the top IO pads.

3. Keep the “Show flylines” panel open and, if needed, adjust the viewing area
(pan/zoom) to see the picture below. If you accidentally unselect the macros

Figure 1. Flylines of the IO macro connections.

and the flylines disappear, use the [Ctrl] key to re-select the three circled
macros shown here, and the flylines will re-appear.

4. The three macros with a direct connection to IO pad cells are called
I_CLOCK_GEN/I_PLL_PCI, I_CLOCK_GEN/I_PLL_SD and
I_CLOCK_GEN/I_CLKMUL. Hover your mouse arrow over a cell to see its
information window in the lower-left area. The two PLLs in this design should
be placed towards the top left and right corners of the chip so they are closer
to their respective clock pads.

Question 4. Which IO pad cells are these PLLs connected to?

 ..

 ..

Lab 2

Design Planning Lab 2-7

Synopsys IC Compiler 1 Workshop

5. Now you will manually move the I_PLL_PCI macro, which is connected to

the left pad, into the core area. Keep in mind that you can use the undo
button to back track your steps.

a. Select just the I_PLL_PCI macro using Selection Tool button.

b. Select the Move/Resize Tool (M) button (may be in the left
banner of the window) to begin the moving process.

Drag the I_PLL_PCI macro to approximately the top-left corner of
the core area. Leave some room to the edges of the core.

c. With the PLL still selected, use the align functions to align the PLL to
the top and left edges of the core:
Click the Align Objects to Left button to
align it to the core’s left edge

From the pull-down menu select the Align Objects
to Top button to align it to the core’s top edge

The PLL is now aligned with the edges of the core.

d. To make sure that the cell is not moved by virtual
flat placement, click on the “padlock” button to
lock it down. You should see an X through the cell
now. This is an alternative to using
set_dont_touch_placement.

6. Try to move the “fixed” I_PLL_PCI macro. You should not be able to do so.
If you are able to move it, use the undo button to put it back and “fix” it in
place. Don’t worry if you make a mistake since you will be provided with a
script to place these macros at the expected coordinates in a later step.

Use the [ESC] key as needed to return the cursor to the “select” mode.

Lab 2

Lab 2-8 Design Planning

Synopsys IC Compiler 1 Workshop

7. In the next steps you will repeat the steps above to move the other two macros
into the core area and near their respective IO pad cells. DO NOT spend too
much time on this step to get them perfectly placed

Click on I_PLL_SD to select it.

Select and drag it to the top-right corner of the core area.
Align it to the top and right edges.

Rotate 180o to reduce its wirelength.
Click the “padlock” button to lock it down.

Select and drag I_CLKMUL to the left side of I_PLL_SD.
Align it to the top edge.
From the”Rotate” pull-down menu select Y-axis to mirror along the Y-
direction (= flip in the X-direction) to reduce the wirelength.

To space I_CLKMUL 10 microns from I_PLL_SD:
Hold down the Ctrl key and select both I_CLKMUL and I_PLL_SD.

Specify a distribute offset of 10 .

Select the Distribute Objects to Right button .

. A script in the next step
will ensure correct placement:

Lock down the I_CLKMUL macro.

Close the flylines panel on the right by clicking on the small “x” .

You should see an “X” in each of the three macros when they are selected.
The remaining macros will be placed concurrently with standard cells during
VF placement at a later step.

8. To ensure that the three macros are placed as expected, you can source the
following script:

source –echo scripts/preplace_macros.tcl

Lab 2

Design Planning Lab 2-9

Synopsys IC Compiler 1 Workshop

Task 4. Perform Virtual Flat Placement

Normally, prior to performing virtual flat placement, any known macro placement
constraints as well as hard/soft placement blockages should be defined. We will
skip these steps initially so that you can observe the “default” VF placement
behavior. After the first placement the above constraint will be applied and VF
placement will be performed again. You will notice a marked difference.

1. Verify that the current VF placement strategy options have default settings:

report_fp_placement_strategy

Question 5. What is the current default sliver size distance?

 ..

2. Apply a sliver size of 10 to prevent standard cells from being placed in narrow
channels (< 10 um) between macros:

set_fp_placement_strategy -sliver_size 10

3. Execute a timing-driven VF placement with “no hierarchy gravity” (to ensure
that the “logical hierarchy” does not affect placement of this non-hierarchical
or flat layout):

create_fp_placement –timing_driven \

–no_hierarchy_gravity

4. Examine the global route congestion map

Click on the Global Route Congestion button .
Click the Reload button on the pop-up panel.

:

A dialog box appears which contains the command to be executed for
congestion analysis:

report_congestion -grc_based -by_layer \
 -routing_stage global

Select “OK”.

5. An “Errors” box appears in the GUI – click OK.

If you scroll up in the log to the beginning of the congestion analysis output,
you will see an “Error” message (PSYN-348) about a macro that “is not
fixed”. You can safely ignore this. You could “fix” all macro placements prior
to the congestion analysis to avoid the PSYN-348 error. However, you will be
running create_fp_placement again to modify macro placement, so
you don’t want fixed placement on the macros yet.

Lab 2

Lab 2-10 Design Planning

Synopsys IC Compiler 1 Workshop

You should not have any congestion issues. There are overflow GRCs but
they are scattered over the core area.

6. Close the Global Route Congestion panel on the right by clicking on the small
“x” in its upper right corner.

7. Routing of power and ground straps and macro rings for this design can be
made easier if we turn some of the macros into arrays. Source the script below
to apply macro placement constraints to accomplish the following goals:

• Place macros as close to the edges of the chip as possible

• Group macros together as much as possible

• Turn on virtual IPO to mimic timing optimization (and prevent
unnecessary placement optimization)

• Limit the legal placement orientation of some RAMs

source –echo scripts/macro_place_cons.tcl

8. Double check your settings. Suggestion: Use the up-arrow in the icc_shell
window to find and re-execute the “strategy” command:

report_fp_placement_strategy

report_fp_macro_options

9. Source the following script to set a hard keepout margin of 10 microns around
all macros. This will make it easier to create P/G rings around the macros and
avoid congestion as well as signal routing DRCs around the macros:

source –echo scripts/keepout.tcl

10. Take one last look at the macro placement before running the VF placer again:

create_fp_placement –timing_driven \

–no_hierarchy_gravity

Note: Notice that the macro placement is very different – a lot of
‘grouping’ of similar macros, except for the manually
placed ones, which are “fixed” in place.

11. Analyze the global route congestion map again. You need to click Reload
OK to update the map. An “Error” box appears in the GUI - click OK (similar
to step5).

There should not be any congestion issues.

Close the analysis panel on the right by clicking on the small “x”.

Lab 2

Design Planning Lab 2-11

Synopsys IC Compiler 1 Workshop

12. Lock down all macros:

set_dont_touch_placement [all_macro_cells]

13. Save the cell:

save_mw_cel –as floorplan_placed

Task 5. Create P/G Rings Around Macro Groups

In the task following this one you will use “Power Network Synthesis” (PNS) to
automate the creation of power/ground core and individual macro rings, as well as
vertical and horizontal straps. If you want to create rings around groups

1. We have created a script to create P/G rings around six groups of macros.
Take a look at the file located at ./scripts/macro_pg_rings.tcl. The P/G rings
are created by:
- Defining a rough “region” that encompasses a group of macros
- Defining the block ring layers, widths and offsets
- Creating (committing) the metal routes

 of macros,
that is done prior to PNS, which is what this task will accomplish.

2. Execute the script:

source ./scripts/macro_pg_rings.tcl

3. Take a look at the rings that have been created.

Notice that the “PLL” macro in the upper-left corner is the only macro that
does not have a P/G ring around it – this will be done by PNS.

Notice also that, in addition to the rings around the macro groups, there are
vertical/horizontal straps in between the macros. This is nice feature of the
create_fp_group_block_ring command. It can be disabled with the
–skip_strap option, if preferred.

Lab 2

Lab 2-12 Design Planning

Synopsys IC Compiler 1 Workshop

Task 6. Power Network Synthesis

The power “grid” needs to be completed. You could create P/G straps that feed the
center of the core, a core ring, as well as rings around individual macros “manually”
(similar to the way the macro group rings were created in the previous task), but to
do so would require you to guess the appropriate number and width of the straps, as
well as the width

If you are running short on time, you can source the scripts/pns.tcl to
perform steps 1-5 below. Skip steps 6-7 if you use this script.

 of the core ring to achieve acceptably low IR drop. Instead, you
will use IC Compiler’s Power Network Synthesis (PNS) capability to automatically
determine the number and width of straps, as well as the core ring width, based on a
target IR drop. You can experiment with different goals, and when acceptable
results are achieved you then “commit” or physically implement the power grid.

First, you will use the PreroutePower Network Constraints menu to apply a
number of constraints for the core rings, the macro rings as well as the vertical and
horizontal straps:

1. Apply the strap constraints:
PreroutePower Network ConstraintsStrap Layers Constraints...
Note: If you don’t see this menu switch the task menu to Design

Planning: File Task Design Planning

Select the METAL5 Layer and set the Direction to Horizontal.
Set the “By strap number” Max to 24 and Min to 2.

Set the Width Max to 4 and the Min to 2.

Set the PG Spacing to Microns and enter 0.6.

Click the Set button.

Repeat the steps for METAL4 with direction Vertical, with the same
min/max number of straps, min/max widths, and spacing.

Set then Close the dialog.

2. Apply the core ring constraint:
PreroutePower Network ConstraintsRing Constraints...
Select METAL3 (Horizontal) and METAL2 (Vertical) for the core ring.

Select the Ring width option and choose Variable.

Set the Max to 12 and the Min to 10.

Click the Set button.
Close the dialog.

Lab 2

Design Planning Lab 2-13

Synopsys IC Compiler 1 Workshop

3. Define a macro ring for the PLL macro without a ring:
PreroutePower Network Constraints Block Rings Constraints…
Select the Specified cell instances option.

In the LayoutWindow select the upper-left PLL macro.

Back in the Block Rings Power Network Constraints dialog, next to the

selected Specified cell instances radial, click the “Sets or appends
selected cells to the edit field” button to enter the selected macro cell name in
the field.

For Power Ground nets enter VDD VSS.
Set the vertical and horizontal layers to METAL4 and METAL5 respectively,
and change the width to 3 for both.
Click on Set, then Close.

4. Apply global constraints:
PreroutePower Network ConstraintsGlobal Constraints...
Keep the existing options selected.

Select the option “No routing over hard macros”.
Click on Set, then Close.

5. Invoke PNS as follows:

Open the PNS dialog using PrerouteSynthesize Power Network…

In the Synthesize power network by nets field enter: VDD VSS.

Change the Supply voltage (V) to 1.32 .
(The nominal voltage is 1.2 V; Use the maximum voltage of 1.32V)

Leave the Target IR Drop at 10% of supply voltage.

Change the Power budget (mW) to 350 (the power spec for this chip).

Under the Pads info section, select “Specified pad masters”.
Enter pv0i pvdi into the adjacent field.

Press Apply, and after some calculations you should see an IR drop map.

Question 6. What are the estimated maximum IR drops for VDD and VSS?
(look at the log output)

 ..

 ..

Question 7. How many horizontal and vertical VDD straps, and what
widths, were used to achieve the above IR drops? (look at the
log again)

 ..

Lab 2

Lab 2-14 Design Planning

Synopsys IC Compiler 1 Workshop

6. Play with the “Target IR Drop” field to see its affect on the number and width
of the straps: Set it to “Lowest”, or set the Specified field to 100 mV, then
Apply again. Observe how the network changes, and along with it the IR drop.

7. When done experimenting, set the Target IR Drop back to 10%, then Apply.

8. Build the suggested power plan clicking on the Commit button, or by typing:

commit_fp_rail

Cancel the dialog if it is still open.

9. Zoom into your chip to see how all PG straps and rings were created.

Notice that there are no connections between the macros and the surrounding
power rings.

Notice also that there are no P/G rails along the standard cell placement rows.

10. To complete power plan we need to hook up the power pins on all macros,
and create the standard cell power rails. Execute the following commands to
accomplish this:

preroute_instances

preroute_standard_cells –fill_empty_rows \

 -remove_floating_pieces

Note: The WARNING about “floating rail segments
removed” is expected because we used the
“–remove_floating_pieces” option.

11. Zoom in and notice the macro pin connections and the blue P/G rails on
metal1 (called METAL).

12. Now analyze the completed power plan using PrerouteAnalyze Power
Network…
Enter the same values for Power Ground nets (VDD VSS), Power budget
(350 mW), Supply voltage (1.32 V), and Specified pad masters (pv0i pvdi)
that were used previously for Power Network Synthesis, then press OK.

You will see another heat map.

Question 8. What are the final reported maximum VDD/VSS IR drops?
(from the log)

 ..

 ..

Lab 2

Design Planning Lab 2-15

Synopsys IC Compiler 1 Workshop

Question 9. Can you explain why the final IR drops are smaller?

 ..

 ..

13. Close the PNA Voltage Drop on the right by clicking on its small “x”.

14. Save the cell:

save_mw_cel –as floorplan_pns

Task 7. Check the Timing

Now that the power plan is done, you have to perform a few more steps to complete
the placement and to verify max-delay (setup) timing.

1. If you are not able to see the standard cells in the LayoutWindow, go to the
“Visibility” panel in the left margin of the LayoutWindow, expand the “Cell”
listing by selecting the “+” sign, and make sure that “Standard” is checked.

2. PNS created many straps on METAL4 and METAL5, which were placed over
the standard cells. It can be advantageous to prevent standard cell placement
under the straps – this reduces the likelihood of congestion along the straps,
and reduces crosstalk effects on the power nets. Apply a “complete” power
net (pnet) blockage on the straps, then run the virtual flat placement again to
take pnet settings into account:

set_pnet_options -complete "METAL4 METAL5"

create_fp_placement –timing_driven \

–no_hierarchy_gravity

Verify that there are no longer any standard cells under the straps.

3. Since we are about to check timing, perform actual global routing by running
the following command:

route_zrt_global

4. Bring up the global route congestion map (no need to “Reload). There should
not be any congestion issues. Close the panel (click on small “x”).

Lab 2

Lab 2-16 Design Planning

Synopsys IC Compiler 1 Workshop

5. Generate a maximum-delay (setup) timing report using the “view” procedure
(it will take a few seconds to update the timing and generate the report):

v report_timing

Use the search mechanism to highlight or tag the word “slack”:
RE Search type in “slack” Tag. Scroll up/down. You should see the
words slack (MET) followed by a positive number at the end of each of
the 8 clock group paths. This design meets setup timing. Click on Close
Search then Close Window.

Question 10. Can you analyze timing without first performing an actual
global route? If so, should you?

 ..

6. To fix any timing violations (and design rule violations), if there were any,
you would invoke the following command and repeat global route. Feel free
to do so, if you have the time, otherwise skip to the “Save the cell” step:

optimize_fp_timing –fix_design_rule

Repeat global routing, congestion analysis and timing analysis one last time.
The design should not have any congestion issues or timing violations.

7. Save the cell as floorplan_complete.

Task 8. Write Out the DEF Floorplan File

1. Remove all the placed standard cells then write out the floorplan file in DEF
format. The DEF floorplan file will be used by Design Compiler
Topographical to re-synthesize the design using the floorplan you just
designed, and will again be used by IC Compiler to re-create the floorplan
when reading in the re-synthesized netlist (next Task):

remove_placement -object_type standard_cell

write_def –version 5.6 –placed –all_vias –blockages \
 -routed_nets –rows_tracks_gcells –specialnets \
 –output design_data/ORCA.def

2. Verify that the DEF file has been created in the design_data directory.

3. Close the design library without saving the design in memory:
File Close Library Discard All

Lab 2

Design Planning Lab 2-17

Synopsys IC Compiler 1 Workshop

Task 9. Create 2nd Pass Design Ready for Placement

We will now pretend that this design was re-synthesized from RTL code using
Design Compiler Topographical mode, along with the floorplan description
captured in the DEF file generated in the previous task. You have been given a 2nd
pass netlist, ORCA_2.v, along with an updated constraints file, ORCA_2.sdc.

1. Perform data setup using the new ORCA netlist and constraints:

source scripts/2nd_pass_setup.tcl

This script executes the following standard data setup steps:

create_mw_lib orca_lib_2.mw -technology $tech_file \
 -mw_reference_library $mw_ref_libs –open

import_designs design_data/ORCA_2.v \
 -format verilog -cel ORCA -top ORCA

set_tlu_plus_files -max_tluplus $tlup_max \
 -min_tluplus $tlup_min \
 -tech2itf_map $tlup_map

source scripts/connect_pg.tcl
read_sdc design_data/ORCA_2.sdc
read_def design_data/ORCA_2.scandef
source scripts/opt_ctrl.tcl

2. Read the DEF file that was written out in the previous task:

read_def design_data/ORCA.def

Note: You should now see the same floorplan that you designed in
the previous tasks.

3. Re-apply the pnet options that you applied after Power Network Synthesis in
Task 6, step 1. These settings are not captured in the DEF file:

set_pnet_options -complete "METAL4 METAL5"

4. Save the cell as ready_for_placement.
5. Exit IC Compiler.

You have completed the Design Planning lab.

Lab 2 Answers / Solutions

Lab 2-18 Design Planning

Synopsys IC Compiler 1 Workshop

Answers / Solutions

Question 1. What is the command to create a pad cell called
VDD_TEST using the reference cell pvdi?

create_cell {VDD_TEST} pvdi

Question 2. What “side” is used to define the location of the upper-right
corner cell (cornerur)?

The upper right corner is defined as “-side 2”.

Question 3. Will the pads always be spaced equally? Explain.

No. If some pads defined in the tdf file contain an “offset”
value then the offset (with respect to the bottom or left core
edge) is met first before the remaining pads are spread
equally in the remaining space. If no offsets are used then
all the pads will be spread out as close to equal as possible.

Question 4. Which IO pad cells are these PLLs connected to?

The PLLs connect to the 2nd pad cell from the top, on the
left side (pclk_iopad), and the right most on the top
(sdr_clk_iopad).

Question 5. What is the current default sliver size distance?

0.00

Question 6. What are the estimated maximum IR drops for VDD and
VSS?

From the log (Your numbers may vary slightly):

Target IR drop : 132.00 mV
Net name : VDD
IR drop of the synthesized net : 127.32 mV
...
...
Target IR drop : 132.00 mV
Net name : VSS
IR drop of the synthesized net : 127.85 mV

Note: The strap calculations are based on meeting the IR
drop constraint for VDD. By default VSS inherits the same
number and width of straps as VDD. This is why it is
possible for the VSS IR drop to be different than VDD, and
possibly even violate the ”target” (not in this case).

Answers / Solutions Lab 2

Design Planning Lab 2-19

Synopsys IC Compiler 1 Workshop

Question 7. How many horizontal and vertical VDD straps, and what
widths, were used to achieve the above IR drops?

From the log: (Your numbers may vary slightly)

Net name : VDD
...
Layer: metal5, Direction: Horizontal, # of Straps: 10..

The maximum width of straps: 3.000 microns

The average width of straps: 2.501 microns

Layer: metal4, Direction: Vertical, # of Straps: 10..
The maximum width of straps: 3.000 microns

The average width of straps: 2.506 microns

Question 8. What are the final reported maximum VDD/VSS IR drops?

From the log: (Your numbers may vary slightly)

Net Name: VSS
...
Maximum IR drop: 74.218 mV
...
Net Name: VDD
...
Maximum IR drop: 71.358 mV

Question 9. Can you explain why the final IR drops are smaller?

This is primarily because of the standard cell rails, which
were not present during PNS. These help to further
distribute power and reduce the overall power network
“resistance”.

Question 10. Can you analyze timing without first performing an actual
global route? If so, should you?

You can, but without the global route, timing analysis will
be based on “virtual routes” – orthogonal route estimates
without specific layer or congestion information. Virtual
routes are less accurate and correlate less well with the
detailed routes to be performed later.

Lab 2 Answers / Solutions

Lab 2-20 Design Planning

Synopsys IC Compiler 1 Workshop

This page is left blank intentionally.

Placement Lab 3-1

Synopsys 20-I-071-SLG-011

During this lab you will perform perform scan-chain aware
placement and optimization for timing, area and power.

After completing this lab, you should be able to:

• Perform setup for placement and timing optimization

• Perform setup for DFT and power optimization

• Perform standard cell placement

• Analyze congestion, timing and power

• Perform incremental placement and optimization

Placement 3

Lab Duration:
60 minutes

Learning Objectives

Lab 3

Lab 3-2 Placement

Synopsys IC Compiler 1 Workshop

Introduction

In this lab you are provided with a floorplanned design called ORCA_floorplanned
which is ready for the placement phase. You will execute the appropriate pre-
placement setup steps and then perform standard cell placement. After placement
you will analyze the results and execute additional appropriate steps to improve the
results.

Answers / Solutions
There is an ANSWERS / SOLUTIONS section at the back of each lab. You
are encouraged

 to refer often to this section to verify your answers, or to obtain
help with the execution of some steps.

Relevant Files and Directories
All files for this lab are located in the lab3_placement directory under your home
directory.

 lab3_placement/

 orca_lib.mw/CEL

ORCA_floorplanned The ORCA design after design planning,
saved in Milkyway format

 scripts/

inputs_toggle_rate.tcl A script used to set statistical toggle rates for
the input ports.

ndr.tcl A script containing commands to define
non-default clock routing rules.

opt_ctrl.tcl Timing and optimization controls

 design_data/

ORCA_TOP.scandef Scan chain information used during scan-
chain re-ordering.

 .synopsys_dc.setup Setup variables.

Lab 3

Placement Lab 3-3

Synopsys IC Compiler 1 Workshop

Instructions

Task 1. Pre-placement Settings and Checks

1. Invoke the IC Compiler “GUI” from the lab3_placement directory.

UNIX$ cd lab3_placement

UNIX$ icc_shell -gui

2. Open the design library, open the ORCA_floorplanned design cell:

open_mw_lib orca_lib.mw

open_mw_cel ORCA_floorplanned

Note: In the previous Design Planning lab a larger, more
complex full-chip version of ORCA was used in order to
illustrate IC Compiler’s design planning capabilities and
features. From this lab on, we will be using a simpler block-
level

3. Apply timing and optimization controls:

 version of ORCA. This block-level design will enable
us to explore the key steps of placement, CTS and routing
while keeping run times reasonable.

source scripts/opt_ctrl.tcl

4. Macro placement is usually defined and “fixed” during design planning. It is,
however, possible that a last minute change is made to the macro placement
while forgetting to “fix” the new location. It is therefore a good idea to repeat
the “fixing” step prior to placement to ensure that no macros are moved
during the placement phase:

set_dont_touch_placement [all_macro_cells]

5. Verify that all process metal layers are available for routing - there should be
no ignored layers:

report_ignored_layers

6. Verify that standard cells are allowed to be placed under the METAL2 –
METAL4 power nets, as long as no DRC violations occur (partial blockage):

report_pnet_options

Lab 3

Lab 3-4 Placement

Synopsys IC Compiler 1 Workshop

7. During design planning both soft and hard placement keepouts were applied.
Verify that these variables are still set and are not the default value of zero:

printvar physopt_hard_keepout_distance

printvar placer_soft_keepout_channel_width

Question 1. Since the above are variable settings, which are
not saved with a design cell, how did these
variables retain their non-default values?

 ...

 ...

Question 2. How will these variables affect placement?

 ...

 ...

 ...

 ...

8. The clock nets will be constrained to be routed on METAL3 – METAL6, with
double-spacing rules. Non-default routing (NDR) rules affect congestion,
which can affect placement. Apply the non-default routing rules for all clock
nets, as shown below, by sourcing the ndr.tcl file provided to you:

Source this file: scripts/ndr.tcl

define_routing_rule 2X_SPACING -spacings {METAL2 0.6 \
 METAL3 0.6 METAL4 0.8 METAL5 1.2 METAL6 1.4}

set_clock_tree_options -clock_tree [all_clocks] \
 -routing_rule 2X_SPACING -layer_list "METAL3 METAL6"

9. Verify that the floorplanned design is ready for placement:

check_physical_design –stage pre_place_opt

Note: There should be no errors or warnings.

10. Execute a different pre-placement check:

check_physical_constraints

Lab 3

Placement Lab 3-5

Synopsys IC Compiler 1 Workshop

Note: The messages about “Narrow Placement Area” can be
ignored for this design.

11. This design includes scan chains, which were inserted during synthesis. The
netlist that was read into IC Compiler during the data setup phase was a
Verilog netlist.

Question 3. Does the SCANDEF information transfer into IC
Compiler through the Verilog netlist?

 ...

12. Execute the following command to confirm that no scan chain information
exists:

report_scan_chain

The report is empty, which means that no scan chain annotation exists.

13. Load the SCANDEF file (which was generated during synthesis, after scan
insertion):

read_def design_data/ORCA_TOP.scandef

Question 4. How many scan chains exist in the design?

 ...

14. Generate another scan chain report. Use the “view” TCL procedure:

v report_scan_chain

You should see scan chains now! This information will be used during
place_opt to optimize the scan chain ordering.

Question 5. What place_opt option is required to perform
scan chain re-ordering during placement?

 ...

Close the report_scan_chain view window: Close Window

Next we are going to setup for power optimization.

Lab 3

Lab 3-6 Placement

Synopsys IC Compiler 1 Workshop

15. We do not have a simulator-generated SAIF file, which is preferred, so instead
we will read in a user-generated toggle-rate file.

report_saif

source scripts/inputs_toggle_rate.tcl

report_saif

Notice that the toggle-rate coverage is reported under the “User Annotated”
column.

16. We do not have multi-Vth libraries, so there is no need to modify the logical
and physical library settings. Even without the multi-Vth libraries IC Compiler
can still achieve some leakage power reduction by cell down-sizing and buffer
removal. Leakage power optimization is enabled by default. You can confirm
this with:

 report_power_options

17. Enable low-power placement (LPP) dynamic power optimization. Gate-level
dynamic power optimization (GLPO) will be enabled after place_opt, just
before psynopt:

set_power_options –low_power_placement true

report_power_options

Note: There is a warning with set_power_options –
low_power_placement command. It will be replaced by
another command in the future release.

Question 6. What place_opt option is required to perform
power optimization during placement?

 ...

18. Save the current design with its pre-placement settings:

save_mw_cel -as ORCA_preplace_setup

Lab 3

Placement Lab 3-7

Synopsys IC Compiler 1 Workshop

Task 2. Placement and Optimization

1. Invoke placement and optimization using the appropriate options - congestion
was not an issue during design planning:

place_opt –area_recovery -optimize_dft -power

While place_opt is running you may observe the output on the screen
to get an idea of the optimizations that occur.

2. Save the current design:

save_mw_cel -as ORCA_place_opt

3. Generate a congestion map from the LayoutWindow:

 Global Route Congestion Reload OK
The GUI step is the same as executing the following command:

report_congestion –grc_based –by_layer \
 –routing_stage global

The congestion level is marginal and is probably ok since they are scattered
and not concentrated in a single area.

4. Close the congestion map by clicking on the small

5. Generate a physical design report and scroll to the

 x in the Global Route
Congestion panel.

top

report_design –physical

 of the output:

Question 7. What is the reported standard cell utilization?

 ...

6. Generate a QoR (quality of results) report:

report_qor

Question 8. Are there any user-defined path groups?

 ...

Question 9. Why are we not concerned about hold time
violations?

 ...

Lab 3

Lab 3-8 Placement

Synopsys IC Compiler 1 Workshop

 ...

7. Report the power dissipation:

report_power

Task 3. Incremental Optimization

From the previous analysis steps we have determined that we have some
congestions issues and no significant timing violations. We should perform an
incremental optimization to improve the design’s area and power utilization.
We can also enable GLPO to try to further reduce dynamic power dissipation.

1. Enable gate-level dynamic power optimization (GLPO):

set_power_options –dynamic true

Note: There is a warning with set_power_options –dynamic
command. It will be replaced by another command in the
future release.

2. Perform incremental logic optimization, using appropriate options:

psynopt -area_recovery –power

3. Generate a congestion map and verify that it is about the same as before:

 Global Route Congestion Reload OK
Close the congestion map by clicking on the small x in the Global Route
Congestion panel.

4. Generate a physical design report and scroll to the top of the output:

report_design –physical

Question 10. Has the utilization changed significantly?

 ...

5. Generate a QoR report and check for any setup

report_qor

 timing violation:

There should not be any setup timing violation.

6. Report the power dissipation:

Lab 3

Placement Lab 3-9

Synopsys IC Compiler 1 Workshop

report_power

While there is not much improvement in power optimization since we do not
have SAIF annotations and also we are not providing multi-Vt libraries. In
your production design, you should expect a good improvement at this stage.

7. Save the design and exit IC Compiler:

save_mw_cel -as ORCA_placed

exit

You have completed the placement and power optimization lab.

Lab 3 Answers / Solutions

Lab 3-10 Placement

Synopsys IC Compiler 1 Workshop

Answers / Solutions

Question 1. Since the above are variable settings, which are not saved
with a design cell, how did these variables retain their non-
default values?

Since we just started a new IC Compiler session and we did
not explicitly re-apply these variables ourselves, they must
be in the .synopsys_dc.setup file, which is
automatically applied whenever IC Compiler is invoked.
Take a look and verify that this is indeed the case.

Question 2. How will these variables affect placement?

physopt_hard_keepout_distance = "5" ensures
that no cells are ever placed within 5 microns of any
macro’s border during placement, or any subsequent
optimizations.
placer_soft_keepout_channel_width = "15"
ensures that during coarse placement no cells are placed in
“channels” (the distance between any two macros, or
between a macro and the core boundary) of 15 microns or
less. Cells are allowed to be placed in these areas during
placement legalization and subsequent optimization.

Question 3. Does the SCANDEF information transfer into IC Compiler
through the Verilog netlist?

No. SCANDEF is only captured and automatically
transferred into IC Compiler if reading in a ddc netlist.

Question 4. How many scan chains exist in the design?

11.

Question 5. What place_opt option is required to perform scan chain
re-ordering during placement?

-optimize_dft

Question 6. What place_opt option is required to perform power
optimization during placement?

-power

Question 7. What is the reported standard cell utilization?

The utilization percentage is around 81%.

Question 8. Are there any user-defined path groups?

Answers / Solutions Lab 3

Placement Lab 3-11

Synopsys IC Compiler 1 Workshop

Yes. From the path group names COMBO, INPUTS and
OUTPUTS we can assume that these are user-defined I/O
path groups.

Question 9. Why are we not concerned about hold time violations?

By default place_opt optimizes only setup timing
violations. It ignores hold timing. We will address hold
timing during clock tree synthesis.

Question 10. Has the utilization changed significantly?

No.

Lab 3 Answers / Solutions

Lab 3-12 Placement

Synopsys IC Compiler 1 Workshop

This page is left blank intentionally.

Clock Tree Synthesis Lab 4-1

Synopsys 20-I-071-SLG-011

 Clock Tree Synthesis 4

The purpose of this lab is for you to become familiar with
the clock tree synthesis capabilities in IC Compiler.

You will perform clock tree synthesis on the ORCA_TOP
design, after applying multiple settings. Reports will be
generated to monitor and track the progress of the design.

After completing this lab, you should be able to:

• Set options and exceptions for CTS

• Synthesize the clock trees

• Generate and analyze clock tree skew and timing reports
in order to determine CTS QoR

• Fix hold time violations and optimize the design for
better area

• Route the clock nets using Non Default Routing Rules

• Analyze the routed clock nets

Lab Duration:
75 minutes

Learning Objectives

Lab 4

Lab 4-2 Clock Tree Synthesis

Synopsys IC Compiler 1 Workshop

Introduction

During this lab, you will perform Clock Tree Synthesis with all the associated
commands you learned in lecture.

Answers / Solutions
There is an ANSWERS / SOLUTIONS section at the back of each lab. You
are encouraged

 to refer often to this section to verify your answers, or to obtain
help with the execution of some steps.

Relevant Files and Directories
All files for this lab are located in the lab4_cts directory under your home directory.

 lab4_cts/

 orca_lib.mw/CEL

place_opt A placed and scan inserted design saved in
Synopsys Milkyway format.

 scripts/

cts_setup.tcl A script to set CTS options.

ndr.tcl A script to specify non-default clock routing
rules.

opt_ctrl.tcl A script to specify general timing and
optimization controls.

If you encounter problems, a command script is available to help you
recover: .solutions/run.tcl. You can cut and paste from this file into the command
line of
IC Compiler to execute a part of the sequence to catch up.

Lab 4

Clock Tree Synthesis Lab 4-3

Synopsys IC Compiler 1 Workshop

Instructions

Task 1. Copy and Load the Working CEL

1. Invoke IC Compiler from the lab4_cts directory.

2. Open the design library orca_lib.mw.

open_mw_lib orca_lib.mw

3. Copy the CEL place_opt and name it as clock_opt.

copy_mw_cel –from place_opt –to clock_opt

This cell is the equivalent result of place_opt placement and optimization
performed in the previous lab.

4. Open the clock_opt CEL.

open_mw_cel clock_opt

Task 2. Examine the Clock Trees

1. Use the following commands and answer the questions:

report_clock –skew -attributes

Question 1. Which clock has the smallest uncertainty?

 ..

report_clock_tree -summary

Question 2. How many end points or “sinks” does the clock
SD_DDR_CLK have? Why?
(HINT: Execute report_port on the start point or
“Generated Source” of SD_DDR_CLK)

 ..

 ..

Lab 4

Lab 4-4 Clock Tree Synthesis

Synopsys IC Compiler 1 Workshop

view report_constraint -all

Question 3. Are there any setup (max_delay) timing violations?

 ..

2. Start the GUI to perform some more analysis:

gui_start

3. Open an InteractiveCTSWindow by selecting ClockNew Interactive CTS
Window.

A new window opens listing the clocks that can be synthesized. Verify that
SD_DDR_CLK is a generated clock (look at the Is Generated column)
with SDRAM_CLK as its master clock (from the hierarchical display in the
Clock Name column), and sd_CK as its source or start-point.

4. Perform closer analysis of SDRAM_CLK by selecting it from the list, then
clicking on the button that became selectable: “Show clock tree browser of
selected clock”.

Note: Click Yes if asked to run report_clock_tree first.

5. A new sub-window opens. Maximize it by double-clicking on its title bar.

6. Select the “+” next to SDRAM_CLK, then select sdram_clk, which is the
name of the start point (an input port) of the SDRAM_CLK clock. On the right
you should see a long list of all the sinks (end-points) connected to this clock.
Use the right panel (NextLevelFanout) to analyze the sinks and answer
the following questions:

Lab 4

Clock Tree Synthesis Lab 4-5

Synopsys IC Compiler 1 Workshop

Question 4. Are there any sinks with “exceptions”? Hint: Click on the
“Exception” column to sort by exception.

Question 5. Why are the above sinks classified as
implicit_exclude_pin? Hint: See Figure 1 below
and look at the SDRAM_CLK sinks.

 ..

 ..

Task 3. Preparing for Clock Tree Synthesis

Many designs have special or non-default requirements for their clock trees, in
which case executing a “default” clock tree synthesis is not sufficient.

CTS will only balance the delays (minimize skew) to “stop pins”, which, by default,
are clock pins of sequential cells. If there are additional pins that need to be
balanced along with these clock pins, IC Compiler needs to be explicitly told about
them prior to CTS.

Q

CLK D0

 D1

Q

CLK

SDRAM_CLK

DQ_out_0_reg[0]

DQ_out_1_reg[0]

sd_DQ[0]PADI

OEN

PADI sd_CK

I_SDRAM_TOP/I_SDRAM_IF

sdram_DQ_iopad_0

sdram_CK_iopad

Clock Gating Checks

SD_DDR_CLK
 D1

 D0

Q

CLK

sd_DQ_en_reg[0]

Y

Y

S

S

D0

D0

sd_mux_CK

sd_mux_dq_out_0

Figure 1. SDRAM interface

Lab 4

Lab 4-6 Clock Tree Synthesis

Synopsys IC Compiler 1 Workshop

Figure 1 shows the SDRAM interface. The clock SDRAM_CLK is connected directly
to the select pins of muxes, which in turn, will drive the output PADs at the chip
level. In this lab we are using the block-level design called ORCA_TOP, so the
MUX outputs are connected to output ports sd_DQ and sd_CK instead of IO pad
cells. The “dummy” mux driving sd_CK is required because of the tight timing
requirement of the DDR SDRAM interface, which produces data at its output data
ports on both the rising and the falling clock edges. This design requires that the
clock skew from SDRAM_CLK to sd_DQ and sd_CK be optimized. By default
select (S) pins are marked as “implicit_exclude_pin”. To have CTS balance the
skew you need to redefine these select pins as “stop pins”, as shown in lecture.

In the following steps, if you get stuck, use the man page and, if necessary, the
ANSWERS section in the back of this lab.

1. Use the command learned in lecture to define the S pins of the muxes you
discovered earlier as “stop_pin”. Using the wildcard character “*” you should
be able to specify all 18 exceptions using one command.

If you applied the command correctly, you should now see the GUI show the
pins as “stop_pin” (click on the “Exception” bar to sort by this column).

2. Use the GUI or the shell to set the clock target skew to 0.1 for all clocks.
Relaxing the skew target from the default of 0 will speed up clock tree
synthesis (clock_opt –only_cts –no_clock_route). For this
design, a skew of 0 is not needed.

3. Adjust the clock uncertainties for post-CTS timing analysis and optimization
(clock_opt –only_psyn –no_clock_route):

For this design, to account for clock jitter, issue commands that will set the
setup and hold uncertainties for all clocks to 0.1.

Note: The clock uncertainties must be adjusted before performing
timing optimization (-only_psyn) to prevent the original
uncertainties (which include estimated skews) from being
used during this phase.

4. It is always a good idea to specify the buffers to be used for CTS. You should
look for buffers in your library that have balanced rise and fall times. This will
generally improve quality of the results.

Lab 4

Clock Tree Synthesis Lab 4-7

Synopsys IC Compiler 1 Workshop

Using the set_clock_tree_references command, specify the following
buffers to be used during the “DRC buffering” phase of CTS:
bufbd1 bufbd2 bufbd4 bufbd7 bufbdf.

To simplify the lab, we will not specify buffers for the skew balancing
(-sizing_only) and delay insertion (-delay_insertion_only) phases
of CTS.

Note: For actual designs it IS recommended to also specify buffer
lists for the latter two phases of CTS!

5. Configure CTS to use non-default routing. You can either explicitly execute
each of the A-B-C steps below, or you may instead execute a pre-written
script (scripts/ndr.tcl) for all of three steps:

A. Define an NDR rule called CLOCK_DOUBLE_SPACING with these
spacing values:
METAL3 0.42 METAL4 0.63 METAL5 0.82

B. Report the defined NDR rule and verify that the spacing values are
specified correctly:

report_routing_rule CLOCK_DOUBLE_SPACING

C. Direct CTS to use CLOCK_DOUBLE_SPACING NDRs on all clock route
segements, except for the “first level” (level 1) sinks, which should use default
routing rules; Restrict the clock routes to metal layers METAL3 – METAL5.

6. Verify that the “Layers Available for Clock Routing” and
“Buffers Available for Clock Tree Synthesis” have been
correctly defined.

v report_clock_tree -settings

7. Perform the following check prior to running CTS:

check_physical_design –stage pre_clock_opt -display

In addition to the standard output, this command generates a report in HTML,
which is automatically loaded in a web browser. You are encouraged to
explore the browser and follow the links to see how easy it is to obtain
information generated from the report.

Lab 4

Lab 4-8 Clock Tree Synthesis

Synopsys IC Compiler 1 Workshop

Note: The CTS-821 warning is reported for any generated clock
that can not be traced back to its master source. During the
CTS setup of this design, a “stop_pin” exception was
defined on the S pin of the muxes, which breaks the clock
path between the master clock source of SDRAM_CLK and
its generated clock source (sd_CK). Since this is intended,
you can safely ignore this warning.

Note: The CTS-832 warning is reported for SD_DDR_CLK
clock defined at port sd_CK and loops to itself. This is a
simple loop and CTS should run fine. In a more complex
loop where sequential cell is involved, the user may have to
break the loop prior to running CTS.

Quit the web browser when done.

8. Set the clock delay calculator to Arnoldi. This causes the delay calculation to
use the more accurate Arnoldi-based delay models on clock nets in a post-
CTS design (instead of the default Elmore-based delay model).

set_delay_calculation –clock_arnoldi

9. Use the following command to check for any clock tree issue:

check_clock_tree

The same CTS-821 and CTS-832 warnings are reported and can be ignored
for this design. You are now ready to build the clock trees!

Task 4. Perform Clock Tree Synthesis

The following steps follow the “ICC QoR Reference Methodology (RM)” flow.

1. Synthesize all clock trees, without any timing optimization or routing:

clock_opt –only_cts –no_clock_route

2. Review the global skew summary after CTS:

report_clock_tree -summary

Record skew and latency for the indicated clocks:

 Skew Longest Path

SYS_CLK

SYS_2x_CLK

Lab 4

Clock Tree Synthesis Lab 4-9

Synopsys IC Compiler 1 Workshop

3. Generate a different skew report using clock timing command:

report_clock_timing -type skew –significant_digits 3

Record skew and latency for the indicated clocks:

 Skew Longest Path
(max Latency)

SYS_CLK

SYS_2x_CLK

Question 6. Why are the skews reported by report_clock_tree and
report_clock_timing different?

 ..

 ..

 ..

4. Generate a timing report:

v report_timing

From clock network delay (propagated) you can confirm that all
clocks network delays have been set to “propagated” mode automatically
post-CTS. This means that for clock latency calculations, the actual clock
network delays are being calculated and propagated (instead of using the
estimated “ideal” values specified in the SDC constraints).

5. Generate constraint report for all violations:

v report_constraint -all

Question 7. Are there any setup or hold timing violations?

 ..

6. Save the design CEL as clock_opt_cts.

Lab 4

Lab 4-10 Clock Tree Synthesis

Synopsys IC Compiler 1 Workshop

Task 5. Perform Hold Time Optimization

In this task you will fix the hold time violations and you will perform area recovery.

1. Enable hold time fixing:

set_fix_hold [all_clocks]

Unless the above attribute is set on the clocks, IC Compiler will not perform
any hold time optimization.

At this stage you could perform hold time optimization using psynopt.
Instead, you will perform hold time optimization in addition to area recovery.
It is a good idea to perform area recovery at this stage because the clocks are
now fully defined, and the critical paths are well understood.

2. Generate a QoR report:

report_qor

Note the “Design Area”: __ _________________

You could also use the report_area command.

3. It is highly recommended to use the area critical range setting (see Appendix
of the Data Setup Unit 1). Area recovery is done by down-sizing, and thereby
slowing down paths with positive timing slack. This down-sizing happens up
to a point when the timing slack reaches 0.0 ns, by default. By applying an
“area critical range” of 0.2, for example, we are preserving 0.2ns of timing
margin (at the expense of a little less area recovery). This can be useful during
the signal routing stage, where “crosstalk” effects may show up and further
degrade our timing.

set_max_area 0 ;# This is already set previously

set physopt_area_critical_range 0.2

4. Ensure that current RC extraction data is available to capture the more
accurate “integrated clock global router” (ICGR) data for clock nets (as
opposed to virtual-route based data). This is a “good practice” step that should
always be performed prior to clock_opt –only_psyn ... :

extract_rc

Lab 4

Clock Tree Synthesis Lab 4-11

Synopsys IC Compiler 1 Workshop

Note: We executed a report_timing in the previous task,
which implicitly already performed this RC extraction. IC
Compiler will not un-necessarily re-execute RC extraction if
it was already performed, and if nothing has changed since
then. You will notice that this step completes quickly and
returns a “1”. This implies that RC re-extraction was not
repeated.

5. Perform post-CTS timing, area and scan chain optimization, without clock
routing:

clock_opt –only_psyn -area_recovery –optimize_dft \

 –no_clock_route

During the timing optimization phase, notice the additional column titled
“MIN DELAY COST”. This indicates that hold time optimizations are now
being performed as well, which is due to set_fix_hold.

6. Analyze the design to make sure that all violations – setup, hold, design
rules – are fixed. Generate a QoR report and compare the Design Area to the
number recorded above.

Question 8. Why do you think the design area has increased slightly?

 ..

7. Save the cell as clock_opt_psyn.

Task 6. Route the Clocks

1. Route the clocks:

route_zrt_group -all_clock_nets \

 -reuse_existing_global_route true

This will perform global routing, track assign and detail routing on all the
clock nets in the design.

2. Analyze all constraints one last time to ensure there are no timing/DRC
violations. Since there are no violations, there is no need to perform any
additional timing optimization or clock tree optimization.

3. Save the cell as clock_opt_route.
4. If the GUI is closed, open it using “gui_start” and look at the LayoutWindow.

5. In the View Settings panel turn off the visibility for Cell, as well as for Power
and Ground under the sub-category Net Type of the Route category. You
can visually see now that most of the clock nets are routed on METAL3-
METAL5.

Lab 4

Lab 4-12 Clock Tree Synthesis

Synopsys IC Compiler 1 Workshop

6. To obtain actual wiring statistics:

report_design –physical

Toward the bottom of this report, under the Signal Wiring Statistics section,
you can verify that most of the wires are on METAL3-METAL5.

7. To analyze the clock net level topology,
select “Clock Trees” visual mode to display
the clock tree type and level information.

In the panel that opens, select “Reload”, then
select the clock trees you want to see in the
pop-up dialog box. Try using the panel on the
right to turn on/off each clock level.

Note: Level 0 is the net that connects to the root. Level 1 is the net
that is driven by the first driver, etcetera.

8. Exit IC Compiler.

Congratulations! You have completed Clock Tree Synthesis lab.

Answers / Solutions Lab 4

Clock Tree Synthesis Lab 4-13

Synopsys IC Compiler 1 Workshop

Answers / Solutions

Task 1. Load the Design

Start IC Compiler, copy and load the design.

Task 2. Examine the Clock Trees

Question 1. Which clock has the smallest uncertainty?

SD_DDR_CLK with 0.05 ns.

Question 2. How many end points or “sinks” does the clock
SD_DDR_CLK have? Why?
(HINT: Execute report_port on the start point or
“Generated Source” of SD_DDR_CLK)

Zero. SD_DDR_CLK is a generated clock defined on the
port sd_CK (as shown by report_clock). From
report_port sd_CK you will see that this is an output

Question 3. Are there any setup (max_delay) timing violations?

port and it is not driving any load.

There are no setup timing violation. There are many hold
(min_delay) timing violations which will be addressed after
the clock trees are inserted.

Question 4. Are there any sinks with “exceptions”? Hint: Click on the
“Exception” column to sort by exception.

Yes.

Question 5. Why are the above sinks classified as
implicit_exclude_pin? Hint: See Figure 1 below
and look at the SDRAM_CLK sinks.

 There are 18 pins that are classified as “implicit_
exclude_pin”. This is because these pins are SELECT pins
of MUXes. You can expand the column header in the
browser to see the pin names. These pins will be ignored for
clock tree skew and latency optimization.

Lab 4 Answers / Solutions

Lab 4-14 Clock Tree Synthesis

Synopsys IC Compiler 1 Workshop

Task 3. Preparing for Clock Tree Synthesis

Step 1

set_clock_tree_exceptions \

 -stop_pins {I_SDRAM_TOP/I_SDRAM_IF/sd_mux_*/S}

Step 2

set_clock_tree_options -target_skew 0.1

Step 3

set_clock_uncertainty 0.1 [all_clocks]

Step 4

set_clock_tree_references -references \

 {bufbd1 bufbd2 bufbd4 bufbd7 bufbdf}

Step 5

define_routing_rule CLOCK_DOUBLE_SPACING \

 -spacings {METAL3 0.42 METAL4 0.63 METAL5 0.82}

report_routing_rule CLOCK_DOUBLE_SPACING

set_clock_tree_options \

 -routing_rule CLOCK_DOUBLE_SPACING \

 -layer_list {METAL3 METAL5} \

 -use_default_routing_for_sinks 1

Answers / Solutions Lab 4

Clock Tree Synthesis Lab 4-15

Synopsys IC Compiler 1 Workshop

Task 4. Perform Clock Tree Synthesis

Question 6. Why are the skews reported by report_clock_tree
and report_clock_timing different?

The report_clock_tree command reports “global”
skew, meaning the maximum skew across the entire clock
domain (the difference between the longest and the shortest
insertion delays), even if these extreme clock paths are not
related. Furthermore, report_clock_tree does not
take into account any timing derating
(set_timing_derate). This report is useful to
understand what CTS does, because CTS is based on
“global skew”.
The second report calculates actual (or “local”) clock skew:
The reported maximum skew is between two flip flops of
that clock domain that share a timing path (one clock branch
launches the data while the other branch captures the data).
The report_clock_timing command also considers
set_timing_derate. The latter report is more accurate
in determining the real worst-case clock skew.

If no timing derate is applied, report_clock_tree will
generally show larger skews than
report_clock_timing. In our design, however, since
we have applied timing derating (confirm with
report_timing_derate), the
report_clock_tree skews appear to be smaller (since
it does not take timing derating into account).

Question 7. Are there any setup or hold timing violations?

There are hold violations. You can ignore the max area
violation since the constraint for “max area” is set to zero.

Question 8. Why do you think the design area has increased slightly?

Hold time fixing added many buffers, which increase the
design area. The area would most likely have been larger
without “area-recovery”.

Lab 4 Answers / Solutions

Lab 4-16 Clock Tree Synthesis

Synopsys IC Compiler 1 Workshop

This page is left blank intentionally.

Routing Lab 5-1

Synopsys 20-I-071-SLG-011

Routing

After completing this lab, you should be able to:

• Perform routeability checks on a placed design
with clock trees

• Apply routing options

• Perform initial route and post-initial route
optimization

• Analyze the design for timing, logical and physical
DRC, and LVS violations

• Fix LVS errors

• Use the color highlighting facility to analyze
various aspects of the design

Lab Duration:
60 minutes

Learning Objectives

5

Lab 5

Lab 5-2 Routing

Synopsys IC Compiler 1 Workshop

Introduction

The purpose of this lab is to familiarize you with the routing capabilities in IC
Compiler. You will open a cell that has gone through clock tree synthesis, and will
execute the necessary commands to route the design. We will be using the Zroute
router for this lab.

Answers / Solutions
There is an ANSWERS / SOLUTIONS section at the back of this lab. You
are encouraged

 to refer often to this section to verify your answers, or to obtain
help with the execution of some steps.

Relevant Files and Directories
All files for this lab are located in the lab5_route directory under your home
directory.

lab5_route/

 orca_lib.mw/CEL/clock_opt_route

 The ORCA_TOP design, after CTS and
clock routing – the starting cell for this lab.

 ./scripts Provided scripts for use in this lab.

If you encounter problems, a command script is available to help you
recover: ./.solutions/run.tcl

Lab 5

Routing Lab 5-3

Synopsys IC Compiler 1 Workshop

Instructions

Task 1. Load the Design and Common Settings

1. Change to the lab5_route directory, then invoke IC Compiler. Make a
working copy of the CEL named clock_opt_route from the library
orca_lib.mw, then open the copy:

open_mw_lib orca_lib.mw

copy_mw_cel -from clock_opt_route -to signal_route

open_mw_cel signal_route

start_gui

This cell is the result of clock tree synthesis and clock tree routing from the
CTS lab.

2. Post-CTS we want to use slow or “maximum” delays for setup timing checks
and optimization, and fast or “minimum” delays for hold timing. The library
variable settings are not stored with the CEL. We have specified these
variables in the .synopsys_dc.setup file. Check the library listing to
verify that each loaded “max” library has a corresponding “min” library:

list_libs

3. Load the common settings which were used during the placement and CTS
phases of this design, and which are also required for the routing phase:

source scripts/common_optimization_settings_icc.tcl

source scripts/common_placement_settings.tcl

source scripts/common_post_cts_timing_settings.tcl

source scripts/common_route_si_settings_zrt_icc.tcl

Note: If you look at the contents of the above files, you may notice
that many commands are “commented out”. These files
come from Synopsys’ “Reference Methodology” scripts,
which you can download from
https://solvnet.synopsys.com/rmgen.
The commands that have been commented out are intended
to be used as needed, for non-default situations.

Lab 5

Lab 5-4 Routing

Synopsys IC Compiler 1 Workshop

Task 2. Ensure that the Design is Ready for Routing

We have purposely introduced a pre-route problem in this design, to enhance the
learning experience. You will uncover and fix the pre-route problem in this task.

1. Analyze the design for setup and hold timing, as well as logical DRCs:

report_constraint -all

Question 1. Are there any timing or logical DRC violations?

 ..

2. Verify that there are no ideal nets and no high fanout nets:

all_ideal_nets

all_high_fanout -nets -threshold 501

If the commands return nothing

3. Verify that the preferred routing directions are as expected, and that TLUPlus
files are loaded:

 then the design doesn’t have ideal nets or nets
with a fanout that is greater than 500. You can rerun the all_high_fanout
command with lower threshold values if your HFN (high fanout net) strategy
allows unbuffered HFNs at lower levels. It is important to verify that the
design is free of unbuffered HFNs at this point. You would want to create a
buffer tree for any remaining HFN that needs one, prior to routing the design.

report_preferred_routing_direction

report_tlu_plus_files

4. Verify that all placements are legal:

check_legality

5. Verify that all power and ground pins are physically connected to P/G nets:

verify_pg_nets

Question 2. Are there any P/G issues?

 ..

6. We will use the error browser to locate the problem:

Lab 5

Routing Lab 5-5

Synopsys IC Compiler 1 Workshop

In the LayoutWindow select Verification Error Browser … to open the
“Error Browser” dialog window.
Check the “Rail” box (since this is a P/G problem).

To the right of the empty rail field click on the icon. There should be one
error cell highlighted. Click OK to select it.

Click OK at the bottom of the “Load Error Cell” dialog.

The Error Browser dialog re-appears. In the top pane select the “Rail” error
type. A detailed list of errors appears in the second pane, with the first one
automatically selected. In the LayoutWindow you should notice that the layout
has automatically zoomed to the selected error location.

If you zoom out a little now, you can more easily see the problem: There are
standard cells (purple) that are partially placed under the wide VSS ring
(METAL3, red) that surrounds the ram16x128 macros. These macro cells
have VSS rails (METAL, blue) along their top edges, but are missing a VDD
rail along their bottom edges

. These standard cells were inserted after the
standard cell rails were created, causing the open VDD connections.

Lab 5

Lab 5-6 Routing

Synopsys IC Compiler 1 Workshop

7. Fix the P/G connection problem by routing the standard cell P/G rails:

preroute_standard_cells -remove_floating_pieces

verify_pg_nets

Note: The P/G connection problems should be cleaned up now.

Task 3. Route and Optimize Design

1. Enable “concurrent” redundant via insertion:

Setting this option prior to routing activates via
doubling during route_opt, without the need for a
standalone command. Redundant via insertion can
optionally also be performed during as an explicit
step (command) during “chip finishing”

set_route_zrt_common_options \

 -post_detail_route_redundant_via_insertion medium

set_route_zrt_detail_options \

 -optimize_wire_via_effort_level medium

Note: With -post_detail_route_redundant_via_insertion
enabled (value set to low, medium, or high), the tool performs
redundant via insertion after each detail routing change,
including the initial detail routing, ECO routing, and incremental
routing. Enabling this option keeps the redundant vias in the design
up-to-date with routing changes.
When inserting redundant vias, it is recommended to set the detail
option -optimize_wire_via_effort_level to medium
(default low).

2. Run the following report commands to check non-default routing rules and
routing setup:

report_routing_rules

report_route_opt_strategy

report_route_zrt_common_options

report_route_zrt_global_options

report_route_zrt_track_options

report_route_zrt_detail_options

Lab 5

Routing Lab 5-7

Synopsys IC Compiler 1 Workshop

Question 3. In the global_, track_ and detail_options reports
is timing driven mode true or false?

3. Perform initial routing, which includes global routing, track assignment and
detail routing:

route_opt -initial_route_only

4. Scroll up to the top of the route_opt log and locate the “(ROPT-020)”
information message for global route, track assignment and detail route.

Question 4. Is timing driven mode true or false?

 ..

5. Generate post-initial-route reports:

view report_clock_tree -summary

view report_clock_timing -type skew

view report_qor

view report_constraints -all

Note: There shouldn’t be any timing or logical DRC violations. If
there were any violations the command in the next step
would be executed to optimize for timing and DRCs.

6. Perform post-initial route optimization with -power to optimize for power.
The -skip_initial_route option prevents the initial route from being
completely ripped up and re-routed:

route_opt -skip_initial_route -power

7. Ensure that the logical P/G connections are up to date after routing:

derive_pg_connection -power_net VDD -power_pin VDD

 -ground_net VSS -ground_pin VSS

derive_pg_connection -power_net VDD -ground_net VSS \

 -tie

Lab 5

Lab 5-8 Routing

Synopsys IC Compiler 1 Workshop

Task 4. DRC and LVS Error Checking and Fixing

Check whether there are any physical design rule violations. You will check for
these violations using Zroute’s verify_zrt_route command. The
verify_lvs command is used to help isolate opens and shorts.

1. Run the signal route verification tools:

verify_zrt_route

verify_lvs

Note: There are shorts in the routed design.

2. The next step is to run incremental route_opt to see if that will fix the shorts.

route_opt –incremental

Note: Incremental route_opt does not help in this case.

3. You can try running ECO route.

route_zrt_eco

Note: The shorts should be fixed now.

4. Examine the layout for redundant via insertion.
Also, generate the following report and look for this statement near the end:
“Double Via rate for all layers:”

report_design_physical -route

Question 5. Do you see double vias on many wires? What conversion
percentage has been obtained for all layers?

 ..

5. Save the design as route_opt_final:

save_mw_cel -as route_opt_final

Lab 5

Routing Lab 5-9

Synopsys IC Compiler 1 Workshop

Task 5. GUI Analysis Tools

The GUI provides color coded displays that help you find objects with properties
that lie within a certain range of values.

1. Color the display by net capacitance values. Click the down arrow next to the
snapshot button.

Select “Net Capacitance”. Click “Reload”. Click OK when the “Net
Capacitance” dialog pops up. Nets with different capacitance values are
highlighted with different color codes.

Note: Click “Apply” to redraw the display after (un)checking any

bin.

2. Highlight cells according to their timing slack.

At the top of the “Visual Mode” dialog, pull down the menu reading “Net
Capacitance” and select “Cell Slack”. Click “Reload”, then press OK in the
new dialog to accept the defaults.

Lab 5

Lab 5-10 Routing

Synopsys IC Compiler 1 Workshop

3. In a similar manner, you can highlight cells by logical hierarchy. Give it a try
to look at the location of various Verilog module’s cells.

You have successfully completed the Routing lab.

Answers / Solutions Lab 5

Routing Lab 5-11

Synopsys IC Compiler 1 Workshop

Answers / Solutions

Question 1. Are there any timing or logical DRC violations?

No. There is a maximum area violation, but this is expected
since the maximum area constraint (Required Area) is 0!

Question 2. Are there any P/G issues?

Yes, some VDD pins are not connected to the VDD net.

Question 3. In the global_, track_ and detail_options reports
is timing driven mode true or false?

All three are false.

Question 4. Is timing driven mode true or false?

All three are true! The route_opt command uses its
own settings for timing driven mode during routing. It
ignores the default

Question 5. Do you see double vias on many wires? What conversion
percentage has been obtained for all layers?

 setting in the options. If a user explicitly
sets the –timing_driven mode to false in
route_zrt_global_options, as well as the track
and detail options, the route_opt defaults will be
overwritten and timing driven will actually be turned off.

You should clearly see many double vias. The double via
conversion rate averages ~90%.

Lab 5 Answers / Solutions

Lab 5-12 Routing

Synopsys IC Compiler 1 Workshop

This page is left blank intentionally.

Chip Finishing Lab 6-1
Synopsys 20-I-071-SLG-011

Chip Finishing

In the previous labs, the standard cells were placed, the
clock trees were synthesized, post-placement timing
optimization and routing were completed. In this lab, the
design will be taken through the final steps before output to
GDSII format.

After completing this lab, you should be able to:

• Perform DRC and LVS checks

• Reduce critical areas by performing wire spreading
and wire widening

• Fix antenna violations using diodes

• Fill unused locations in the core with filler cells

• Perform optional redundant via insertion

• Perform metal filling for metal density rule
compliance

• Stream out GDSII data

Lab
Duration:
60 i t

Learning Objectives

6

Lab 6

Lab 6-2 Chip Finishing
Synopsys IC Compiler 1 Workshop

Introduction

The starting cell for this lab has completed the routing phase. The “chip finishing”
steps performed in this lab are usually necessary for 90nm technology processes and
below. At 65nm and below, these steps are critical in order to maintain high
manufacturing yield and chip performance.

Answers / Solutions
There is an ANSWERS / SOLUTIONS section at the back of this lab. You
are encouraged

Relevant Files and Directories

 to refer often to this section to verify your answers, or to obtain
help with the execution of some steps.

All files for this lab are located in the lab6_chip_finishing directory under your
home directory.

lab6_chip_finishing/

 orca_lib.mw/CEL

route_opt_final The ORCA_TOP design after CTS and all
routing steps for clocks and signals – the
starting point for this lab.

 scripts/

cb13_6m_antenna.tcl Script to set up antenna rules

If you encounter problems, a command script is available to help you
recover: .solutions/run.tcl. You can cut and paste from this file into the command
line of
IC Compiler to execute a part of the sequence to catch up.

Lab 6

Chip Finishing Lab 6-3
Synopsys IC Compiler 1 Workshop

Instructions

Task 1. Load and Analyze the Design

1. Invoke IC Compiler from the lab6_chip_finishing directory.

2. Open the design library orca_lib.mw:

open_mw_lib orca_lib.mw

3. Copy the CEL route_op_final and rename it as chip_finish:

copy_mw_cel –from route_opt_final –to chip_finish

4. Open the chip_finish CEL:

open_mw_cel chip_finish

5. Verify that there are no

verify_zrt_route

 DRC violations:

Note: Notice the Warning “No antenna rules defined”.
These rules will be added and checked later in this lab.

6. Verify that there are no

verify_lvs

 LVS violations (opens, shorts or floating nets):

7. Generate a constraint report. There should be no

report_constraint –all_violators
OR
rc

 violations:

Note: If there were any constraint, DRC or LVS violations, they
would need to be fixed before continuing with the following
chip finishing steps.

Lab 6

Lab 6-4 Chip Finishing
Synopsys IC Compiler 1 Workshop

Task 2. Critical Area Reduction

In this task you will analyze the design for potential manufacturing yield loss
(critical area) due to opens/shorts, which can be created by airborne particles during
the manufacturing process. To reduce the critical area, which can improve yield,
you will optimize the routing by spreading and/or widening wires.

1. Open the GUI windows (if not already opened):

start_gui

2. Analyze the critical areas graphically:

Select “Short Critical Area”
Select Reload then OK.

This executes report_critical_area
–fault_type short.

Set the “Max threshold” value to 0.1,
then click Apply.

You should see a heat map distribution
similar to the one below. From this map
we see that the maximum critical area “ratio” (the critical area divided by the
area of the small square “analysis window”) is below 10%, which is relatively
low.

3. There is also a textual report that is automatically created in the current

working directory, called output_heatmap. Since this file is over-written
when you perform another critical area analysis, you should save a copy:

Lab 6

Chip Finishing Lab 6-5
Synopsys IC Compiler 1 Workshop

sh mv output_heatmap cca.short.before.rpt

4. Close the Critical Area heat map.

5. Perform wire spreading to reduce the critical area for shorts:

spread_zrt_wires

6. Generate another short heat map – remember to Reload to execute a new
analysis. The critical area improvement is not noticeable from the heat map
since this design didn’t have much of the potential problem to start with.
Close the heat map.

7. You can, however see the effects of wire-spreading by zooming in and taking
a closer look. It is easier if you focus on one layer at a time, for example
METAL3:

In the View Settings panel (press [F8] if the panel is not visible) select the
Objects tab, then enable Track visibility and turn off Cell visibility. Select the
Layers tab and select Hide All to turn off visibility of all layers. On the
METAL3 row click on the Shape and the Track columns. Zoom in until you
see the dotted track lines. You should now be able to locate wire segments
that have been pushed off their routing tracks wherever possible, in order to
increase spacing between the metal traces.

8. Again, you should save a copy of the critical area report. You can analyze
these files after you complete the lab, if you like:

sh mv output_heatmap cca.short.after.rpt

9. Now perform wire widening to reduce open critical area. Also capture the
“before and after” critical area outputs:

report_critical_area -fault_type open

sh mv output_heatmap cca.open.before.rpt

widen_zrt_wires

report_critical_area -fault_type open

sh mv output_heatmap cca.open.after.rpt

10. Close the Critical Area heat map if it is still open.

Here is a screen shot showing the results of wire spreading and wire widening

Lab 6

Lab 6-6 Chip Finishing
Synopsys IC Compiler 1 Workshop

on METAL2. You can see that some segments are wider than the default and
some are pushed off-track.

11. Verify that the design has no DRC, LVS or constraint violations, then save the

cell as chip_finish_ca:

verify_zrt_route

verify_lvs

rc

save_mw_cel –as chip_finish_ca

Note: If there were any timing or logical DRC violations at this
point you could execute psynopt with the appropriate
optimization focus (-only_design_rule,
-in_place_size_only, -size_only, etcetera). If
there were any physical DRC violation you would execute
an incremental detail route:
route_zrt_detail -incremental true

Task 3. Fixing Antenna Rule Violations with Diodes

1. To install a set of antenna rules, source the following command file:

source –echo scripts/cb13_6m_antenna.tcl

Lab 6

Chip Finishing Lab 6-7
Synopsys IC Compiler 1 Workshop

The script sets up antenna layer rules for all conductors and via layers.

2. Use your editor to examine the setup script you just sourced.

The “set_parameter -module droute -name doAntennaConx -value 4”
command sets antenna reporting/fixing to an ‘advanced’ mode. This instructs
the router to use advanced algorithms as well as the antenna rules defined later
in the script by define_antenna_rule and define_antenna_layer_rule.

These antenna rule commands set up modes which determine how metal
layers are processed, as well as default and specific values for antenna ratios.
Man pages for the rule commands are included in the script file. Take a look if
you want additional information.

3. Check the current antenna ratio rules that have been defined, and check if any
antenna violations exist in your design:

report_antenna_rules

verify_zrt_route

Question 1. Are there any antenna violations?

 ..

4. Enable antenna fixing with diodes, then perform incremental detail route to
implement the diode insertion:

set_route_zrt_detail_options \

 -insert_diodes_during_routing true

route_zrt_detail -incremental true

5. For instructional purposes, check for LVS violations at this time:

verify_lvs

Question 2. Can you explain the cause of the VSS and VDD shorts?

 ...

6. The inserted diodes need to be logically connected to power and ground. We
could wait until the end of the chip-finishing flow, where we will perform a
final “pg connection”, but we will do it here as well, to confirm that this is
indeed the cause of the LVS errors:

derive_pg_connection -power_net VDD -power_pin VDD \
 -ground_net VSS -ground_pin VSS

Lab 6

Lab 6-8 Chip Finishing
Synopsys IC Compiler 1 Workshop

derive_pg_connection -power_net VDD \
 -ground_net VSS -tie

7. Verify that the design has no timing, DRC (including antenna), or LVS
violations, then save the cell as chip_finish_antenna:

verify_zrt_route

verify_lvs

rc

#If there were any timing or logical DRC violations
use below commands

route_opt –incremental

derive_pg_connection -power_net VDD -power_pin VDD \
 -ground_net VSS -ground_pin VSS

derive_pg_connection -power_net VDD \
 -ground_net VSS -tie

verify_zrt_route

verify_lvs

rc

save_mw_cel –as chip_finish_antenna

Lab 6

Chip Finishing Lab 6-9
Synopsys IC Compiler 1 Workshop

Task 4. Insert Standard Cell Fillers

Filler cells are used in the core area to ensure continuous power and ground rail
connections, as well as continuous n- and p-wells in each row of standard cells.
Some libraries may contain filler cells with a P/G bypass capacitor onboard. These
usually contain metal shapes. Insert these filler cells after all routing is complete,
but before the metal fill step.

1. Note that the library contains three different filler cells. Two contain metal
and one does not. You want to insert cells with metal first, then follow with
non-metal cells:

insert_stdcell_filler \

-cell_with_metal "feedth9 feedth3" \

-connect_to_power VDD -connect_to_ground VSS \

-between_std_cells_only

Note: You can ignore a warning message about the feed cells not a
std filler cell subtype. To avoid the warning messages, the
library need to be updated.

2. Use the View Settings panel to turn off all metal layer visibility

Question 3. What are the names of the filler cell instances?

 ..

 and ensure that
Cell visibility in on. Examine the layout to locate some filler cells.

Question 4. What happens to an inserted filler cell with metal if it causes
a DRC violation? Hint: look for messages in the log.

 ..

3. Now insert non-metal filler cells:

insert_stdcell_filler -cell_without_metal "feedth" \

-connect_to_power VDD -connect_to_ground VSS \

-between_std_cells_only

4. Make sure your design is still “clean”:

verify_zrt_route

verify_lvs

Lab 6

Lab 6-10 Chip Finishing
Synopsys IC Compiler 1 Workshop

rc

Task 5. Insert Redundant Vias

You may have noticed that most of the vias are already doubled as a result of
concurrent via doubling during detailed route. This task of redundant via insertion is
optional during chip finishing.

1. Generate a physical design report to determine the existing double via rate:

report_design_physical –route

Question 5. What is the current double via rate for all layers?
Hint: Look near the end of the report.

 ...

2. Generate a via mapping table that will be used automatically during redundant
via insertion:

insert_zrt_redundant_vias -list_only

If you need to change via mapping from the default, you need to use
define_zrt_redundant_vias command as shown in the lecture. You
will use the default values for this lab.

3. Use the default medium effort to insert redundant vias:

insert_zrt_redundant_vias -effort medium

4. If you generate a new physical design report you will notice that there is very
little improvement in the percentage of redundant vias. This is because most
of the vias that could be doubled were already done during routing. Running
with high effort would yield a higher via doubling rate but it will also cause
many jogs to fit the additional redundant vias. Too many jogs (corners) may
not be good for lithography in advanced process technologies.

5. Make sure your design is “clean”:

verify_zrt_route

verify_lvs

rc

Lab 6

Chip Finishing Lab 6-11
Synopsys IC Compiler 1 Workshop

6. One of the very last steps before final physical verification is metal filling, to
meet metal density rules. This will use up most of the remaining routing
resources, so it must be executed after all routing and related optimizations
and antenna rule fixing.

For actual designs it is recommended that you use either Hercules or IC
Validator to perform sign-off

insert_metal_filler -routing_space 2 –timing_driven

 metal fill. In this class you will use IC
Compiler’s insert_metal_filler to fill unused tracks with metal shapes:

7. The metal filling goes into a FILL view and is not visible until you “overlay”
this view on top of the layout view. To overlay the metal fill:

Select the Settings tab from the View Settings panel.
Select Overlays tab (you may need to click on the right-arrow to see the tab).
Click the Add button.
Select chip_finish.FILL and click OK.
Set the Brightness of the FILL view so that it is brighter than the CEL view.

8. Ensure that all P/G pins of any cells that were added during this chip-finishing

phase are logically connected to the P/G nets:

derive_pg_connection -power_net VDD -power_pin VDD \

 -ground_net VSS -ground_pin VSS

derive_pg_connection -power_net VDD \

 -ground_net VSS -tie

9. Perform final DRC, LVS and timing analysis:

verify_zrt_route

verify_lvs

rc

Lab 6

Lab 6-12 Chip Finishing
Synopsys IC Compiler 1 Workshop

10. With chip finishing completed, the physical design is done. You can now
write out the design in GDSII or Oasis format for “tape-out” using the
write_stream command (which can be configured, if needed, using
set_write_stream_options):

save_mw_cel -as chip_finish_final

close_mw_cel

write_stream -cells chip_finish_final orca.gdsii

close_mw_lib

11. Exit IC Compiler.

You have completed the last lab of the
IC Compiler 1 Workshop.

Answers / Solutions Lab 7

Chip Finishing Lab 6-13
Synopsys IC Compiler 1 Workshop

Answers / Solutions

Question 1. Are there any antenna violations?

Yes. Over 200 violations are reported.

Question 2. Can you explain the cause of the VSS and VDD shorts?

The diode cells that were placed in the standard cell
placement rows have VSS and VDD pins. These P/G pins
are touching the P/G rails along the top and bottom of the
placement rows. Since we have not yet established a
“logical” connection between the new P/G pins and the
VSS/VDD nets, LVS sees these touching metals as shorts.

Question 3. What are the names of the filler cell instances?

xofiller!feedth9!### and
xofiller!feedth3!###.

Question 4. What happens to an inserted filler cell if it causes a DRC
violation?

It is deleted.

Question 5. What is the current double via rate for all layers?

It is around 90%.

Lab 6 Answers / Solutions

Lab 6-14 Chip Finishing
Synopsys IC Compiler 1 Workshop

This page is left blank intentionally.

	ICC1_201012_LG_00A_GUI
	IC CompilerTM GUI
	Instructions
	Task 1. Start IC Compiler
	Task 2. Navigating the Layout View
	Task 3. Controlling Layer Visibility
	Task 4. Selecting and Querying Objects
	Task 5. Getting Help with Commands and Variables
	Answers / Solutions

	ICC1_201012_LG_00B_GUI
	OPTIONAL:
	More IC CompilerTM GUI
	Instructions
	Task 1. Window Configuration
	Task 2. Pan and Zoom History
	Task 3. Selection Lists, Highlighting and Querying
	Task 4. Analyze Timing Paths
	Task 5. Window Management
	Answers / Solutions

	ICC1_201012_LG_01_Data_Setup
	IC CompilerTM
	Data Setup & Basic Flow
	Introduction
	Instructions
	Task 1. Create a Milkyway library
	Task 2. Load the Netlist, TLU+, Constraints and Controls
	Task 3. Basic Flow: Design Planning
	Task 4. Basic Flow: Placement
	Task 5. Basic Flow: CTS
	Task 6. Basic Flow: Routing
	Answers / Solutions

	ICC1_201012_LG_02_Design_Planning
	Design Planning
	Introduction
	Instructions
	Task 1. Load the Design
	Task 2. Initialize the Floorplan
	Task 3. Preplace the Macros Connected to I/O Pads
	Task 4. Perform Virtual Flat Placement
	Task 5. Create P/G Rings Around Macro Groups
	Task 6. Power Network Synthesis
	Task 7. Check the Timing
	Task 8. Write Out the DEF Floorplan File
	Task 9. Create 2nd Pass Design Ready for Placement
	Answers / Solutions

	ICC1_201012_LG_03_Placement
	Placement
	Introduction
	Instructions
	Task 1. Pre-placement Settings and Checks
	Task 2. Placement and Optimization
	Task 3. Incremental Optimization
	Answers / Solutions

	ICC1_201012_LG_04_cts
	Clock Tree Synthesis
	Introduction
	Instructions
	Task 1. Copy and Load the Working CEL
	Task 2. Examine the Clock Trees
	Task 3. Preparing for Clock Tree Synthesis
	Task 4. Perform Clock Tree Synthesis
	Task 5. Perform Hold Time Optimization
	Task 6. Route the Clocks
	Answers / Solutions

	ICC1_201012_LG_05_route
	Introduction
	Instructions
	Task 1. Load the Design and Common Settings
	Task 2. Ensure that the Design is Ready for Routing
	Task 3. Route and Optimize Design
	Task 4. DRC and LVS Error Checking and Fixing
	Task 5. GUI Analysis Tools
	Answers / Solutions

	ICC1_201012_LG_06_finishing
	Chip Finishing
	Introduction
	Instructions
	Task 1. Load and Analyze the Design
	Task 2. Critical Area Reduction
	Task 3. Fixing Antenna Rule Violations with Diodes
	Task 4. Insert Standard Cell Fillers
	Task 5. Insert Redundant Vias
	Answers / Solutions

