
VCS Simulation Basics 1-1
37489-000-S31

After completing this lab, you should be able to:

• Generate a VCS simulation executable by compiling an
existing Verilog design using VCS

• Simulate the operation of the Verilog design by executing
the simulation binary executable generated by VCS

• Determine whether or not the Verilog design passes
verification by reading the console messages generated
by the Verilog system task calls in the Verilog source code

VCS Simulation Basics

UNIT

15 minutes

Unit 1

Learning Objectives

1

Lab 1

1-2 VCS Simulation Basics
 Verification with VCS Workshop

Getting Started

You will be using the following carry-select 8-bit adder for this lab:

Figure 1-1: 8-bit Carry Select Adder Block Diagram

Our goal is to use this simple design to take you through the fundamentals of the
two-step VCS simulation process. This lab is divided into three parts. Each part
has its own associated tasks. Here's a preview of what you will be doing:

• Compile the adder Verilog source files to generate a simulation executable.

• Simulate the 8-bit adder by executing the simulation executable.

• Interpret the simulation results displayed on console to determine whether or
not the 8-bit adder is working correctly.

• In Part A, all the Verilog source files for the 8-bit adder reside in the working
directory.

• In Part B, some of the Verilog source files for the 8-bit adder are in the working
directory, and the rest are in a library directory. You will compile them and
then use a compile-time file to simplify the VCS compile command line typing.

fa.v

fa.v

fa.v

fa.v

add4.v

add4.v

add4.v

0

1

0

1

0

1

1

1

1

1

4

1

sum[7:0]

cout

a[7:4]
b[7:4]

cin
a[7:0]
b[7:0]

a[0]

a[1]

a[2]

a[3]

b[0]

b[1]

b[2]

b[3]

add8.v

Lab 1

VCS Simulation Basics 1-3
Verification with VCS Workshop

Figure 1-2: Flow Diagram of Lab Exercise

Compile the Verilog
source files with VCS

Interpret simulation
results

Run simulation by
executing simv

Lab 1

1-4 VCS Simulation Basics
 Verification with VCS Workshop

Part A: The two-step Simulation Process

Task 1 Compile to Generate Simulation Executable

In Part A of the lab1, all the Verilog source files for the 8-bit carry select adder
reside in your lab working directory.

After logging on to the workstation, go into the lab1 Part A directory.

1. shell> cd vcs/lab1/parta

You should see four files: fa.v, add4.v, add8.v, and addertb.v.

2. shell> ls

fa.v, add4.v and add8.v are the Verilog source files for the blocks shown in
Figure 1-1. addertb.v is the testbench used to check the funtionality of the
adder.

Compile the Verilog files and generate the simv simulation binary executatble.

3. shell> vcs addertb.v fa.v add4.v add8.v

When the compilation is done, you should see the message

Simv generation successfully completed

Task 2 Run Simulation

Run the testbench and simulate the design by executing simv.

1. shell> simv

When the simulation is done, you should see the message

$finish at simulation time 13107200
 V C S S i m u l a t i o n R e p o r t
Time: 13107200
CPU Time: 0.490 seconds; Data structure size: 0.0 Mb
Mon May 22 09:58:26 2000

(Note: your date & time will be different)

Indicating that the simulation has completed. The CPU time used and the
memory used during the simulation are also reported.

Lab 1

VCS Simulation Basics 1-5
Verification with VCS Workshop

Task 3 Check Simulation Results

You should also see the following printout generated by Verilog system task calls
embedded in the testbench.

…
*** Testbench Successfully completed! ***
…

This verification run was successful! In Lab 2 we will see how to generate
messages to help us debug code errors.

Task 4 Create Simulation Executable with Different Name

The VCS default simulation executable file name is simv. You can direct VCS
to generate a different executable name by using the –o switch.

Recompile the adder design, this time, generate a simulation executable called
addertest.

Compile the Verilog files and generate the simv simulation binary executatble.
(please note that the switch is the letter “o” not the number “0”)

1. shell> vcs addertb.v fa.v add4.v add8.v –o addertest

Check the content of the parta directory.

2. shell> ls

You should see 6 files including the simulation binary executable addertest.

Execute this simulation binary to make sure that the simulation results remain the
same.

3. shell> addertest

You should once again, see the following print out generated by the testbench.

…
*** Testbench Successfully completed! ***
$finish at simulation time 13107200
 V C S S i m u l a t i o n R e p o r t
Time: 13107200
CPU Time: 0.490 seconds; Data structure size: 0.0 Mb
Mon May 22 10:08:21 2000
…

Lab 1

1-6 VCS Simulation Basics
 Verification with VCS Workshop

Part B: Working with Library Directories

Task 1 Compile & Simulate using Design Library Directory

In Part B of the lab1, we have moved fa.v and add4.v into a library directory.
The new file directory structure now looks like the following:

The fa.v and add4.v modules are now modules within the library directory
lib.

Go to lab1 Part B working directory.

1. shell> cd ../partb

2. shell> ls

You now should only see two files: add8.v, and addertb.v.

Compile the design again. Only, this time, we need to reference the library
directory file.

You will also use the –R switch as a shorthand to execute simulation immediately
after compilation.

3. shell> vcs addertb.v add8.v –y ../../lib +libext+.v -R

Notice that because our library files have the .v extension, the +libext switch
is required to get vcs to search the .v extension files.

The source file contents have not changed, only the physical placement of the file
has changed, you should see identical simulation results as in part A.

User_login_directory

…

lib

vcs

… lab1

… fa.v… partb

addertb.v add8.v

add4.v

Lab 1

VCS Simulation Basics 1-7
Verification with VCS Workshop

Task 2 Compiling with –f File Switch

Simplify the command line entry by using the –f compile-time switch. First
create a file which contains the names of all the source files or libraries for the
design. When compiling the design, reference this file with the –f switch.

1. Use any editor you are comfortable with and create the file “adder.f”
containing the following:

addertb.v
add8.v
-y ../../lib +libext+.v

Compile and simulate the design by using the –f switch as follows:

2. shell> vcs –f adder.f -R

The source file contents have not changed, only the physical placement of the file
has changed, you should see identical simulation results as in part A and part B.

You are done! Compilation and simluation using VCS is very simple.

Try out some of what you’ve learned by answering the following questions.

Can you embed the –R switch in the adder.f file? ...

Can you use the –v switch instead of the –y switch? How?

VCS Debugging Basics 2-1
37489-000-S31

After completing this lab, you should be able to:

• Debug an existing Verilog design using Verilog system
task calls.

• Debug an existing Verilog design using VCS UCLI
features

VCS Debugging Basics

UNIT

45 minutes

Unit 2

Learning Objectives

2

Lab 2

2-2 VCS Debugging Basics
 Verification with VCS Workshop II

Getting Started

You will once again be using the following carry-select 8-bit adder:

Figure 2-1: 8-bit Carry Select Adder Block Diagram

We have embedded errors in the lab files. The goal is to use the debugging
techniques presented during lecture to locate and fix the errors. The block
diagram that you will see is what the Verilog code intended to implement.

This lab is divided into two parts. Each part has its own associated tasks.

Here's a preview:

• Compile & simulate the adder to note what the errors are.

• In Part A, you will insert Verilog system task calls into the design files then
compile, simulate and interpret the Verilog system task call outputs to try to pin
point the error. You will repeat this process until the error is located and
corrected.

• In Part B, you will compile with UCLI debugger enabled. You will use the
UCLI interactive simulation control to step through the execution of the code
and locate the source of the error. You will correct the error and simulate to
confirm that the correction works.

fa.v

fa.v

fa.v

fa.v

add4.v

add4.v

add4.v

0

1

0

1

0

1

1

1

1

1

4

1

sum[7:0]

cout

a[7:4]
b[7:4]

cin
a[7:0]
b[7:0]

a[0]

a[1]

a[2]

a[3]

b[0]

b[1]

b[2]

b[3]

add8.v

Lab 2

VCS Debugging Basics 2-3
Verification with VCS Workshop II

Figure 2-2: Flow Diagram of Lab Exercise

Compile and simulate
to confirm correction

Modify source code
to correct error

Determine cause of
error

Compile the Verilog
source files with VCS

Stop simulation at
error point

Start simulation by
executing simv

Lab 2

2-4 VCS Debugging Basics
 Verification with VCS Workshop II

Part A: Debugging with Verilog System Task Calls

Task 1 A useful VCS Switch

Go into the lab2 Part A directory.

1. shell> cd ../../lab2/parta

Starting this lab, you will use an assortment of compile and run-time switches. In
case, you forgot what these switches are, here’s a quick way to get a reminder:

2. shell> vcs -h

This command will give you a list of commonly used VCS compile-time and run-
time switches, along with a brief explanation of their function.

Task 2 Compile and Run First-Pass Verification

Compile and simulate the carry select adder.

1. shell> vcs –f adder.f -R

An error is reported:

***ERROR at time = 25750 ***
a = 01, b = 01, sum = 00; cin = 0, cout =0

With inputs a = 1, b = 1 and cin = 0, the sum is 0 rather than 2. The error could
be in any one of the rtl modules. We will examine the operation of each.

fa.v

fa.v

fa.v

fa.v

add4.v

1

1

1

1

sum[7:0]

cin
a[7:0]
b[7:0]

a[0]

a[1]

a[2]

a[3]

b[0]

b[1]

b[2]

b[3]

add8.v
u1

u1

u1

u2

u3

u4

01
01

0

00

Should be “02”

Lab 2

VCS Debugging Basics 2-5
Verification with VCS Workshop II

Task 3 Debugging the Error

In debugging, you must be able to trace the errors through the design. If you
chose to debug using only the Verilog system task calls, there are generally two
ways of tracing the errors. You can insert the Verilog system task calls in the rtl
modules directly, or you can add the Verilog system task calls in the testbench.

It is better to add debugging statements in the testbench. There are two reasons
for this: One, the testbench is typically where you are doing results checking.
Using Verilog system task calls along with the result checking routines can
effectively give you a breakpoint capability. Two, for performance reasons, you
want to avoid re-compilation. By placing debugging statements in only the
testbench, you can restrict the re-compilation to just the testbench file.

You will modify the testbench to follow the error through the design hierarchy.
First, you will look at the testbench to see where you should place the Verilog
system task call. Enter the following UNIX command:

1. shell> more addertb.v

module addertb;
reg [7:0] a_test, b_test;
wire [7:0] sum_test;
reg cin_test;
wire cout_test;
reg [17:0] test;

add8 u1(a_test, b_test, cin_test, sum_test, cout_test);

initial
if (!$test$plusargs(“monitoroff”))
 $monitor ($time, " %h + %h = %h; cin = %h, cout = %h",
 a_test, b_test, sum_test, cin_test, cout_test);

initial
begin
 for (test = 0; test <= 18'h1ffff; test = test +1) begin
 cin_test = test[16];
 a_test = test[15:8];
 b_test = test[7:0];
 #100;
 if ({cout_test, sum_test} !== (a_test + b_test + cin_test)) begin
 $display("***ERROR at time = %0d ***", $time);
 $display("a = %h, b = %h, sum = %h; cin = %h, cout = %h",
 a_test, b_test, sum_test, cin_test, cout_test);
 $finish;
 end
 end
 $display("*** Testbench Successfully completed! ***");
 $finish;
end
endmodule

Design Under
Test (DUT)
instantiation

Useful Verilog system
task call for monitoring all
activities of an operation

Input stimulus
(We will see a better
method of managing

input stimulus in lab3)

Result checking.
This is where insertion of
$display system task calls
will help the debugging

process the most

The $finish is used to
terminate the simulation
after an error is detected.

If you change this to $stop
you created a breakpoint

at the error state.

You should always have a
message to tell you that the

simulation has completed. If
you don’t see this message,

your simulation may be
caught in an infinite loop

Usage of $time to display the
simulation time can be very

helpful in debugging

Lab 2

2-6 VCS Debugging Basics
 Verification with VCS Workshop II

The best insertion point is right after the detection of the error. Insert more
$display system task calls here to follow the error through the design hierarchy.
First take a look at what is happening in the add8 module.

2. Add the following three lines into addertb.v

$display(“\nIn add8(u1)”);
$display(“a = %b, b = %b, sum = %b; cin = %b, cout = %b”,
 u1.a, u1.b, u1.sum, u1.cin, u1.cout);

…
 if ({cout_test, sum_test} !== (a_test + b_test + cin_test)) begin
 $display("***ERROR at time = %0d ***", $time);
 $display("a = %b, b = %b, sum = %b; cin = %b, cout = %b",
 a_test, b_test, sum_test, cin_test, cout_test);

 $finish;
 end
…

Compile and simulate the adder again to see the results in the add8 module level.

3. shell> vcs –f adder.f -R

The result from this insertion of $display is as follows:

In add8(u1)
a = 00000001, b = 00000001, sum = 00000000, cin = 0, cout = 0

Bit[1] of the output of add4(u1) should have been a 1. Instead, it is erroneously
calculated as 0. Go into add4(u1) to see what’s happening.

fa.v

fa.v

fa.v

fa.v

add4.v

1

1

1

1

sum[7:0]

cin
a[7:0]
b[7:0]

a[0]

a[1]

a[2]

a[3]

b[0]

b[1]

b[2]

b[3]

add8.v
u1

u1

u1

u2

u3

u4

1
1

0

0
0

0
0

0
0

0

0

0

0

0
01
01 00

a[0]
b[0]

a[1]

b[1]

a[2]

b[2]

a[3]

b[3]
sum[3]

sum[2]

sum[1]

sum[0]

cin

c[1]

c[2]

c[3]

cout

Should be “1”

Lab 2

VCS Debugging Basics 2-7
Verification with VCS Workshop II

4. Insert the following in addertb.v.

$display(“\nIn add4(u1)”);

$display(“a = %b, b = %b, sum = %b; cin = %b, c = %b, cout = %b”,

 u1.u1.a, u1.u1.b, u1.u1.sum, u1.u1.cin, u1.u1.c, u1.u1.cout);

…
 $display("\nIn add8(u1)");
 $display("a = %b, b = %b, sum = %b; cin = %b, cout = %b",
 u1.a, u1.b, u1.sum, u1.cin, u1.cout);

 $finish;
 end
…

Create a breakpoint here by changing the $finish system task call to $stop.

5. Change this $finish to $stop.

With this modification, every time an error is detected, the results listed in the
$display will be printed and the testbench will be halted at this time step.

Compile and run the testbench again.

6. shell> vcs –f adder.f -R

When VCS encounters the $stop system task call we embedded, it puts you into
the CLI debugger. You will see the CLI prompt C1>.

Take a look at the $display message first:

In add4(u1)
a = 0001, b = 0001, sum = 0000, cin = 0, c = 001, cout =0

fa.v

fa.v

fa.v

fa.v

add4.v

1

1

1

1

sum[7:0]

add8.v
u1

u1

1
1

0

0
0

0
0

0
0

0

0

0

0

00
a[0]
b[0]

a[1]

b[1]

a[2]

b[2]

a[3]

b[3]
sum[3]

sum[2]

sum[1]

sum[0]

cin

c[1]

c[2]

c[3]

cout

1
1

0

0
0

0
0

0
0

0

0

0

0

1

0

0

Should be “1”

Lab 2

2-8 VCS Debugging Basics
 Verification with VCS Workshop II

The lsb operation looks okay, however, the second lsb has a problem. It looks
like the carry-in is not being added.

Continue the simulation to the next error point and see if you can deduce this
really is a problem. Please continue the simulation with “.”. Before continuing,
try some other CLI commands to see if they work.

Type the following at the CLI prompt:

7. C1> .

The simulation should continue to the next error point and stop. You should see:

In add4(u1)
a = 0001, b = 0011, sum = 0010, cin = 0, c = 001, cout =0

Try the “.” MINI CLI command two more times and record the results. You will
begin to notice that the problem appears to be in how the fa module handles the
carry-in.

Exit the MINI CLI command mode.

8. C1> quit

Display the content of the fa.v file on the console.

9. shell> more fa.v

module fa(a, b, cin, cout);
input a, b, cin;
output sum, cout;

fa.v

fa.v

fa.v

fa.v

add4.v

1

1

1

1

sum[7:0]

add8.v
u1

u1

1
1

0

0
0

0
0

0
0

0

0

0

0

00
a[0]
b[0]

a[1]

b[1]

a[2]

b[2]

a[3]

b[3]
sum[3]

sum[2]

sum[1]

sum[0]

cin

c[1]

c[2]

c[3]

cout

1
1

0

0
1

0
0

0
0

0

1

0

0

1

0

0

Should be “0”

Should be “1”

Lab 2

VCS Debugging Basics 2-9
Verification with VCS Workshop II

assign {cout, sum} = a + b;
endmodule

Do you see the problem? Edit fa.v to fix the problem then re-compile and
simulate to verify that your correction works.

Did the simulation take a while to complete? Why?

Re-simulate with the “monitoroff” plus argument. This will tell VCS to skip the
$monitor lines in the testbench.

…
add8 u1(a_test, b_test, cin_test, sum_test, cout_test);

initial
if (!$test$plusargs(“monitoroff”))
 $monitor ($time, “ %h + %h = %h; cin = %h, cout = %h”,
 a_test, b_test, sum_test, cin_test, cout_test);

initial
…

10. shell> simv +monitoroff

Is there a difference in the simulation speed?

Excessive use of message passing will slow down simulation. When you need
faster simulation speed, the first thing to do is to remove the unnecessary message
passing statements.

Lab 2

2-10 VCS Debugging Basics
 Verification with VCS Workshop II

Part B: Debugging with VCS UCLI Debugger

Task 1 Compile and Run First-Pass Verification

One thing you might have noticed in part A, is that debugging by using Verilog
system task call insertions is a lot of work. You are constantly executing the
complete modify-compile-simulate-verify loop. Not only is the data entry time
consuming, every other step in this debugging loop is also time consuming. In
part B, we will use the UCLI command set to simplify the debugging process.

In part A, you needed to use pen & paper to help you to diagnose the problem.
UCLI simplifies, but does not eliminate the need for pen & paper.

Go to the lab2 Part B directory.

1. shell> cd ../partb

Once again, compile and simulate the adder to see if it’s working properly.

2. shell> vcs –f adder.f –R

Notice there is an error at time 50.

***ERROR at time = 50 ***
a = 00, b = 00, sum = 10; cin = 0, cout =0
$finish at simulation time 50

add4.v

add4.v

0

1

0

1

0

1

4

4

1

sum_test

cout

a[7:4]
b[7:4]

cin_test
a_test
b_test add8.v

add4.v
a[3:0]
b[3:0]

zero_add_cin

one_add_cin

sum[3:0]

sum_0[7:4]

sum_1[7:4]

c4

c8_0

c8_1

0
00
00 10

0

u1
addertb.v

Should be “00”

Lab 2

VCS Debugging Basics 2-11
Verification with VCS Workshop II

Task 2 Compile with UCLI Debugger Switch Enabled

Re-compile, this time, enable the UCLI debugger.

1. First, add a hard breakpoint in addertb.v by modifying the file as follows:

…
 if ({cout_test, sum_test} != {a_test + b_test + cin_test)) begin
 $display(“***ERROR at time = %0d ***”, $time);
 $display("a = %h, b = %h, sum = %h; cin = %b, cout = %b",
 a_test, b_test, sum_test, cin_test, cout_test);
 $finish;
…

Compile & simulate with UCLI enabled.

2. shell> vcs –f adder.f –R –debug_all -ucli

When VCS encounters the $stop system task call we embedded, it puts you into
the UCLI debugger. You will see the UCLI prompt ucli%.

Task 3 Debugging with UCLI Debugger

When the UCLI debugger is invoked, you are placed at simulation time 0.

$stop at time 0
ucli%

If you forget what UCLI commands are available, try the following to get a quick
summary of the UCLI commands:

1. ucli% help

To find out where we are in the design hierarchy enter:

2. ucli% scope

The scope is testbench module addertb.

To get to the problem area enter:

3. ucli% run

***ERROR at time = 50 ***
a = 00, b = 00, sum = 10; cin = 0, cout =0
$stop at time 50 Scope: addertb File: addertb.v Line: 25

Change to $stop

Lab 2

2-12 VCS Debugging Basics
 Verification with VCS Workshop II

Take a look at what signals are defined in addertb.

4. ucli% show

sum_test
cout_test
a_test
b_test
cin_test
test
u1

List all the signals/ports/scopes, and so on. To see value of signal that are of
interest, use the get command.

5. ucli% get sum_test -radix hex

'h10

The sum_test bus is incorrect. Trace the sum_test signal to locate the problem.
Move into the u1(add8) module using the scope command.

6. ucli% scope u1

addertb.u1
7. ucli% show -ports -value -radix hex

a 'h00
b 'h00
cin 'h00
sum 'h10
cout 'h00

In debugging, you often need to print out the values of the same set of variables
multiple times. Creating an alias for this commonly executed task will make
things much easier. Once we have created the alias, executing it is as simple as
just typing in the alias name.

8. ucli% alias vars show -value -radix hex a b sum
sum_0 sum_1 cin c4

9. ucli% vars

a 'h00
b 'h00
sum 'h10
sum_0 'h0
sum_1 'h1
cin 'h00
c4 'h0

Lab 2

VCS Debugging Basics 2-13
Verification with VCS Workshop II

You can see the details of the error here. The 2:1 mux should select the sum_0
value of “0” but it selected the sum_1 value of “1”. This may be the problem.

Leave the UCLI window as is (DO NOT exit UCLI). Open a new UNIX
window and take a look at the add8.v file.

10. shell> more add8.v

Take a look at the mux code. The inputs to the mux are reversed. In fact, both
the sum and the carry mux have the same error.

Assign sum[7:4] = c4?sum_0:sum_1;
Assign cout = c4?c8_0:c8_1;

The dotted line shows what the source code implemented. The intended
implementation is the solid line

DO NOT fix the error yet. Go back into the UCLI debugger window.

.

add4.v

add4.v

0

1

0

1

0

1

4

1
cout

a[7:4]
b[7:4]

zero_add_cin

one_add_cin

sum_0[7:4]

sum_1[7:4]

c4

c8_0

c8_1

1

0

0
0

0 0

0

1

0

sum[7:4]

add4.v

add4.v

0

1

0

1

0

1

4

4

1

sum_test

cout

a[7:4]
b[7:4]

cin_test
a_test
b_test add8.v

add4.v
a[3:0]
b[3:0]

zero_add_cin

one_add_cin

sum[3:0]

sum_0[7:4]

sum_1[7:4]

c4

c8_0

c8_1

0
00
00 10

0

u1
addertb.v

0
0

0

0
0

0

0

0

1
1

sum[7:4]

0

Should be “0”

Lab 2

2-14 VCS Debugging Basics
 Verification with VCS Workshop II

Fortunately, you can emulate a correction without leaving the UCLI environment.
If you change carry-in of the sum_0 adder to “1” and change carry-in of the
sum_1 adder to “0”, you will have effectively corrected the problem.

Notice what the current value of the zero_add_cin and one_add_cin signals are.

11. ucli% show zero_add_cin one_add_cin -value

zero_add_cin 0
one_add_cin 1

Force the zero_add_cin signal to a “1” and the one_add_cin signal to a “0”.

12. ucli% force zero_add_cin 1

13. ucli% force one_add_cin 0

To take a look at all the values, use the “prvars” alias that you created. You
have not, however, included zero_add_cin and one_add_cin when you
created the alias. Because they are needed to view all values, you will need to add
them to the command line.

14. ucli% vars zero_add_cin one_add_cin

a 'h00
b 'h00
sum 'h10
sum_0 'h0
sum_1 'h1
cin 'h00
c4 'h0
zero_add_cin 'h1
one_add_cin 'h0

The carry-in values have changed, sum[7:4] remains the same. This is because
we have not advanced the simulation time to allow for the execution of the new
values. You are going to advance the simulation time by 10 time increments.

15. ucli% run 10s

add4.v

add4.v

0

1

0

1

1

0

4

1
cout

a[7:4]
b[7:4]

zero_add_cin

one_add_cin

sum_0[7:4]

sum_1[7:4]

c4

c8_0

c8_1

sum[7:4]

Lab 2

VCS Debugging Basics 2-15
Verification with VCS Workshop II

60 s

Take a look at the values now.

16. ucli% vars

Now, all values should be correct. Return to the testbench level and verify that
the adder is working properly.

17. ucli% scope -up

18. ucli% show a_test b_test cin_test cout_test sum_test –
value

a_test 0
b_test 0
cin_test 0
cout_test 0
sum_test 0

These are the correct results. Set a breakpoint where c4 in module add8 changes
from ‘0’ to ‘1’ and see if this works.

19. ucli% stop -posedge u1.c4

1
20. ucli% run

Stop point #1 @ 26400 s;

You have advanced the simulation from 60 to 26400 without encountering an
error. Take a look at the values.

21. ucli% show a_test b_test cin_test cout_test sum_test –
value

a_test 1
b_test 8
cin_test 0
cout_test 0
sum_test 8

Is this right?

VCS encountered the transition of c4 from ‘0’ to ‘1’ and stopped the simulation at
that point. There may, however, still be other events in addition to these that have
not yet been encountered. In this specific case, the 4-bit MSB (sum_1 in
addertb.u1) addition takes place after the transition of the u1.c4 signal. The
current value for sum_test, therefore, has not been updated yet. What you are
seeing is the previous value of sum_test.

Lab 2

2-16 VCS Debugging Basics
 Verification with VCS Workshop II

You need to advance the simulation to at least the next time step to see the full
effect of all events in the current time step.

22. ucli% run 1

26401 s
23. ucli% show a_test b_test cin_test cout_test sum_test –

value

a_test 1
b_test 8
cin_test 0
cout_test 0
sum_test 9

Now this looks right.

Remove the breakpoint and continue the simulation.

24. ucli% stop

1: -posedge addertb.u1.c4

We can remove a breakpoint by deleting its breakpoint number.

25. ucli% stop -delete 1

1
Resume the simulation.

26. ucli% run

*** Testbench successfully completed! ***

addertb.v, 30 : $stop;

You have successfully detected the error and worked around it in the simulation.

If you get tired of re-typing the same commands over and over again, use the log
file as a reference to generate a script file. This will simplify your debugging
command entries.

We have already generated a script file for you. In this script file, the commonly
used aliases are defined and the emulated carry-in fix commands are executed.

Note: Remember this is not a real fix! It is used only to allow simulation to continue
without leaving the UCLI environment.

Breakpoint
number

Lab 2

VCS Debugging Basics 2-17
Verification with VCS Workshop II

Restart the simulation.

27. shell> simv –ucli –i test.s

You can see that zero_add_cin and one_add_cin have been set to the
emulated values. Try the alias tb.

28. ucli% tb

This alias works! Let’s simulate.

29. ucli% run

Congratulations! Exit UCLI and take a look at the simulation log file. The log
file should show you everything that you’ve done during the simulation session.

30. shell> more ucli.key

Does the content look familiar? Use the content of this file as a reference to
generate your script files.

You are done with part B. Continue to part C.

Lab 2

2-18 VCS Debugging Basics
 Verification with VCS Workshop II

Part C: Getting Help

Task 1 Submitting Files for Help

If you ever need to get help from the VCS support team, there are two switches
that will make working with the support staff go a lot smoother. They are –ID
and –Xman=4. Let’s see what these switches generate.

You do not need to change the directory.

Enter the following at the UNIX prompt:

1. shell> vcs –ID > id.txt; more id.txt

You should see a summary of the VCS version being used and workstation OS
information. This will help the support staff to quickly focus on issues relevant to
the specific VCS version and workstation OS.

When phone support does not resolve your issue, your next plan of action should
be to submit a testcase for the Synopsys engineers to play with, use the –Xman=4
switch for this purpose.

Enter the following at the UNIX prompt: (to simplify the command typing, the
file script is already written for you)

2. shell> vcs –f adder.f –Xman=4; ls

You should see that the file tokens.v has been generated. Take a look at it.

3. shell> more tokens.v

Do you see all the modules of the design in this file? ...

Note: PLI files are not included in tokens.v. You will need to submit them
separately.

Debugging with DVE 3-1

After completing this lab, you should be able to:

• Debug an existing Verilog design using DVE GUI.

•

Debugging with DVE

UNIT

30 minutes

Unit 3

Learning Objectives

3

Lab 3

3-2 Debugging with DVE
 Verification with VCS Workshop

Getting Started

• You are handed this design, told there's a bug in it, and to fix it. The usual.

• This is a FIFO written in Verilog with a Verilog testbench. The testbench detects bugs
with checkers.

• It prints output and terminates simulation upon failures which we will debug with DVE.

• The FIFO uses count to determine how many entries are in the FIFO and to determine
empty and full. There is a head and tail pointer that shows where to write and read from,
respectively.

• If you ever get lost and need to back up to the beginning, the original .v and .f files are in
the ./start_over directory. Copy them to ".", then go back to the COMPILE AND RUN
step. (can use cleanup script)

FIFO REQUIREMENTS
The testbench has its own counter, count_checker, to determine how many entries are in the
FIFO and to determine empty and full.
The checkers implemented in the testbench cover the following requirements:

1. FIFO count always equals TB count_checker

2. If count_checker is empty, empty flag must be asserted.

3. Never allow underflow

4. Never allow overflow

COMPILE AND RUN
The first thing you decide to do is compile and run this design in VCS.
Since you will debug in DVE, you compile with the "-debug" flag and have $vcdpluson; in your
testbench code.
% vcs -debug -f run1.f (can use run_debug script)
% simv
You notice the message:
FAILURE: Empty flag missed at time 250000000000.000 ps. Exiting test.
...
$finish at simulation time 261000000000.000 ps
This is what we will debug.

DEBUG THE EMPTY FLAG BUG
 We'll start up DVE and open the vcdplus.vpd simulation result file.
% dve &
File -> Open Database... In the dialog, select vcdplus.vpd. Click Open.
The hierarchy pane shows test_fifo.

Lab 3

Debugging with DVE 3-3
Verification with VCS Workshop

The Design dropdown menu shows the name of the displayed file, V1=vcdplus.vpd
Expand test_fifo, and you can see components of this design.

Display the testbench signals in a Wave window.
Select New -> Wave Window from the Window menu. A new wave window opens.
In Hierarchy pane, select test_fifo. Notice its signals are displayed in the Variable pane.

Right click on test_fifo to view the Hierarchy context menu.
Select Add to Waves.
All signals in test_fifo are added to the Wave window.

Notice at the bottom of the main DVE window is the Console pane. In the console pane, you see
a Log, History and Errors/Warnings tab. Each action that you have done in DVE has been logged
to this pane as a Tcl command. You can enter Tcl commands at the command prompt. The
content of these tabs are also saved in history logs in the current directory.

Lab 3

3-4 Debugging with DVE
 Verification with VCS Workshop

Back to figuring out that empty flag bug...

As you can see in the Time field units at the top of the windows, the timescale is currently 1s,
and our simulation was in 100ps. This could be modified via View -> Set Time Scale... But, we'll
just leave it.

Zoom around in Wave window.
In the Wave window, we see a timescale bar at the top of the wave window and one at the
bottom.
The bottom one always shows all time available in the open database.
The top one shows you the portion that is currently visible in the wave window.

Lab 3

Debugging with DVE 3-5
Verification with VCS Workshop

Since our bug was at time 250, let's zoom over there using the bottom timescale.
On the bottom timescale, click down at about time 240 and drag through 250 and let go.

The top timescale and waveform now shows about 240 to 260. This is much quicker than
scrolling.

Put a marker at the time of failure.
Let's put a marker at our problem time. In waveform area, right click and select "Create Marker"
from the context menu.
You get a moving cursor that you can place at time 250 by left clicking a transition at time 250
on a waveform (ex: data_out[31:0]).
It will snap the marker to the nearest transition.
Notice the bottom timescale has a white vertical line through time 250. This denotes the marker
we just created.
Notice also that there is a pink line at time 0 in the bottom timescale. Zoom into that pink line
using the bottom timescale click and drag technique.
The top timescale now displays from time 0 and you see cursor C1=0 in the marker pane.

C1 is the application time, it is displayed in the Time field at the top of the windows.
You can move C1 by entering a time in the Time field, likewise, you can change the time in the
time field by moving C1.
Why is this interesting? This C1 application time is the time attached to the values when you
annotate values in source, or schematics.
We'll use these features soon.

Let's move the application time, C1, to 250 where our marker is.
Zoom back over to the white M1 marker using the bottom timescale. In the Waveform pane, left
click on a transition at time 250.
Left clicks in the waveform pane snap C1 to the nearest transition.
Now the Time field shows 250. The time our empty flag bug showed up.
We can see that signal emptyp in the wave window is indeed 0 at time 250 and the checker says
it should be 1.

Show connections of emptyp in path schematic window.
In main window Variable pane, select emptyp. Click the Show Path Schematic Window button
in the toolbar buttons, or select New -> Show Path Schematic from the Window menu. A path
schematic window opens with the connections of emptyp in the testbench.

Lab 3

3-6 Debugging with DVE
 Verification with VCS Workshop

What do we have here?

• The cyan line shows emptyp connections with solder points in the testbench.

• The green components labelled "*p9@285" and "*p2@68" show process 9 at line 285
and process 2 at line 68, respectively. These represent blocks of source code.

• The orange component shows connections that cross a level of hierarchy.
Since emptyp comes out the top, we can tell it represents connection to a child component.
Hold your mouse over the hierarchy transition component to see the tooltip.
It shows that it connects with test_fifo.U1.emtpyp.
We need to see where emptyp comes from, so double click on the orange hierarchy transition.
Now we are looking at 2 levels of hierarchy, the processes in the testbench AND a process in
test_fifo_U1.
Zoom in a little using the Zoom In 2x toolbar button.
Click the Pan Tool button and grab and drag the schematic with the pan tool so you can see the
process in test_fifo.U1, called *p5@126.
(Or use the window scroll bars)
Change back to the Selection Tool.

Annotate pin values in schematic and expand path.
Select Scope -> Annotate Values, now we see the St0 value for emptyp.

To get the value for count, we will need to expand the path schematic. Click to select the count
port on the process.
Right click and select Expand Path from the menu. Zoom in.
Now we see the source code component connected to count, in addition to its value, 4'h0. The
FIFO is empty.

Show source code from schematic.
In the path schematic window, select the source code block with count as input and empty as
output, that is, the one called *p5@126.
It is now highlighted in white. Now right click and select Show Source from the menu.

Lab 3

Debugging with DVE 3-7
Verification with VCS Workshop

DVE source window pops forward highlighting text on line 126.
The source code is an always block. Let's annotate values here (if they are not already present).

Select Source -> Annotate Values. Values are annotated in green, below the signals.
We see count is empty and based on this code, it should have gone through the if, not the else.
The "if" condition, count == EMPTY, must have failed. Let's verify that.
Searching text in source code. Double click the word EMPTY so that it is highlighted.
Now click the Find... toolbar button. (Looks like binoculars)
 It opens the Find tool. Select Match case, so that we don't stop on emptyp and click Find Next.
We have a match on line 24. We see that EMPTY = (1<<3), the same as the FULL parameter.

Here's our bug.

It should be EMPTY = 0. Close the Find dialog.

Edit source to fix the bug.
Select Scope -> Edit Source.

DVE chose the editor based on your EDITOR environment variable.
Change to EMPTY = 0; and save it.

Recompile and simulate in DVE to verify bug fix.
Recompile the design outside of the GUI - the same as you did in Compile and
Run. (run_debug)
Back in DVE, Select Simulator - Setup. A new window opens, select OK which will run simv in
interactive mode.

The current design is Sim=inter.vpd, and V1=vcdplus.vpd is still there in the menu.
Let's drag test_fifo from Hierachy Window to the Wave Window over "New Group".
Click on test_fifo with the middle mouse button and drag it to the wave window.

Lab 3

3-8 Debugging with DVE
 Verification with VCS Workshop

(Now we have one group with the vcdplus.vpd signals in it and another with the interactive
signals in it.
Notice that the signals in Group2 are all gray since we have not yet run the simulation)
Our C1 cursor is now hooked up to Sim time and is back to 0.

Let's run it to 260 to see if it fixed that empty flag bug.
Enter 260 in the Time field and hit Enter. Sim runs to time 260, C1 and app time are 260.
Scroll the waveform display to find our interacitve "emptyp" signal in the Group2 signal group.
Verify its value is 1 at the time of our marker, time 250. The bug is fixed.

Close the buggy simulation results.
Let's close the post-processing, vcdplus.vpd database.
File -> Close Database. Select V1 .../vcdplus.vpd. Click OK.
Leave the interactive one open, inter.vpd.

RUN SIMULATION IN DVE
Let's look for more bugs.
To run the simulation forward, click the Continue button in the main window toolbar.
Another FAILURE!
You see the VCS simulation output in the Log tab of the Console pane when you are running
simulations in DVE.
This time, is prints and exits simulation:
FAILURE: Counter mismatch at time 16800000000000.000 ps! Exiting test.
...
$finish at simulation time 16900000000000.000 ps

Lab 3

Debugging with DVE 3-9
Verification with VCS Workshop

DEBUG THE COUNTER MISMATCH BUG

Find the checker that printed the error message.
In Hierarchy pane, double click the test_fifo testbench to populate the source window.
Click the Find toolbar button at the top of the window.
Enter "Counter mismatch" and click Find Next to take us to the checker.

We see that the comparison that failed was the tb counter not equal the FIFO counter and it was
detected at the negedge of clk.

In Wave window, zoom full with Zoom Full toolbar button.. Locate the count_checker signal in
the wave window.
Middle mouse click on that signal to place the red insertion bar below it.
Any signals added to the Wave window, will be added at this point.
In Source window, select the text of the checker from the if to the end.

Right click and select Add to Waves from the context menu.

Now we have count and count_checker (our mismatched counters in the Wave Window.)

Compare count signals to find the mismatch.
Select the count and count_checker in the Wave window, so that both are highlighted (use Ctrl or
Shift for multiple selection).
Select Signal -> Compare Signals... The compare tool is automatically populated with the signals
you selected.
The top shows the database and signals to compare (you can also compare instances, not just
signals). The middle shows the options for comparison, and the bottom is a summary.
Just click OK.

The comparison result is added in red to the Wave window at the insertion point.

Lab 3

3-10 Debugging with DVE
 Verification with VCS Workshop

Search forward to get to mismatch.
Select the compare result signal in the wave window.
Move your C1 cursor to time 0 and then click the Search Forward toolbar button in the Wave
window. (blue, right arrow)

The Search is controlled by the "By:" dropdown menu, which is Any Edge, by default.
The C1 cursor moves to time 1670, the time of the first mismatch. Zoom in around that C1
cursor using the top timescale.
We see that the FIFO count is 0 and the testbench counter is 1 at this time.

Get drivers of the count signal.
Double click the waveform transition of the count signal at time 1670, when it transitioned to 0.
This opens the Drivers and Loads window. It shows that there are four drivers in one source
file.

The Source window pops forward with driver icons on the lines that drive count.

Annotate values and step through drivers to find the active one.
In the main window, click the Annotate Values toolbar button, or select Source -> Annotate
Values. (may already be shown)
These values are tied to C1 cursor, now 1670 s, since we searched to the first mismatch.

Our first driver "count <= 0;" We see that the "if" condition is "rstp == 1'b1", and the annotated
value shows rstp is 0 now. So that's not it.

Lab 3

Debugging with DVE 3-11
Verification with VCS Workshop

Lets' try the next. Select Trace -> Drivers/Loads -> Next In This Instance, or select the Next In
This Instance toolbar button.
Now we're in the "case" statement. Looking at the case condition ({readp, writep}), we see from
the annotated values (St1 and St1) that the "2'b11" case applies.
Click the Next In This Instance toolbar button until the cyan current driver icon is on the source
line that is inside the 2'b11 case.
That is, count <= count -1;, the concurrent read and write. (line 117)
When writing and reading, we should not be changing the counter.

This is our bug.

It should be count <= count;.

Edit source to fix the bug.
Select Scope -> Edit Source.
Fix the source code as described above, and save it.

Recompile and simulate in DVE to verify bug fix.
Again, you will need to re-compile the design outside of the GUI. This time however, you will
need to use the following:

vcs -debug_all -f run1.f (can use run_debug_all script)

Lab 3

3-12 Debugging with DVE
 Verification with VCS Workshop

Back in DVE, Select Simulator -> Setup. A new window opens, select OK which will run simv
in interactive mode.

The signals (including the signal compare) are still availalbe in the Wave window so we can
verifiy the fix.

Set a breakpoint on the line we just fixed to verify it.
Click on the + in front of test_fifo in the Hierarchy to expand it.
Double click the test_fifo.U1 in Hierarchy to populate the source window.
Scroll down to the line we edited (or use Find to jump to it.) (line 117)
Green dots to the left of the line number denote breakable lines during an interactive simulation.
Set a breakpoint by clicking the green breakable line on the source line we just edited (count <=
count;)
It turns red to show that we have a breakpoint set here.

Now click the Continue toolbar button to run the simulation.
The simulation stops at the breakpoint, we see from annotated values that count is now 1. Fixed.

Disable the breakpoint and continue running.
Click on the breakpoint (red dot) so that it becomes a hollow red dot, denoting that it has been
disabled.
Now click the Continue toolbar button to run the simulation.

It runs to completion without anymore checker errors. You're done.

File -> Exit to exit DVE.

DEBUG THE COUNTER MISMATCH BUG using SVA

Setup design, compile and setup simulation
We want to use SVA to debug the simulation for the counter mismatch, so we need to remove
the fix and recompile.
This has been automated in the a script, so simply run run_debug_sva.
After the compile completes, start DVE with: dve &

Lab 3

Debugging with DVE 3-13
Verification with VCS Workshop

Back in DVE, Select Simulator - Setup. A new window opens, select OK which will run simv in
interactive mode.
You will notice that another window, Assertions, also opens. We will be using this window in
this session.

Simply click the continue (blue down arrow) in the banner to run the simulation to find the error.
In the log window you will see the same Counter mismatch error as well as the SVA assertion
error at time 1680.

emptyp = 1
FAILURE: Counter mismatch at time 1680000000000.000 ps! Exiting test.
time = 1680000000000.000 ps
"fifo.sva", 18: test_fifo.mychk.a3: started at 1680s failed at 1680s
 Offending '(count == count_checker)'
$finish at simulation time 1690000000000.000 ps

Follow the checker that printed the error message.
Fi the Assertion window is not visible, click Window -> Panes -> Assertion to see the assertion
debug information.

In Assertion window, double click the a3 assertion to populate the wave window.

In the Wave window you will see the a3 assertion with the green up arrows.

You should see the first assertion failure (red arrow) at time 1680.

To see why this assertion is failing, we'll look at the parts of the assertion.

We have count and count_checker (our mismatched counters) in the Wave Window.

Since we are checking this assertion on the negative edge of clk, the previous values (time 1670)
are the ones that show the failure.

Lab 3

3-14 Debugging with DVE
 Verification with VCS Workshop

Double click on the transition of count.
This will open the Drviers and Loads window, but since all of the drivers are in the same source
file we'll look at that file. Select Close.

Now in the sourcecode window we see the first driver for count.

This is exactly where we were in the previous debug session, so we could continue in the exact
same manner.

Using SVA reaches the same problem with with fewer/simpler steps, even for this simple
example.

SUMMARY

We detected, found, fixed, and verified 2 bugs in this Verilog FIFO using the following
features of DVE.

• Hierarchy, Wave, Source, Path Schematic, Console windows

• Post and interactive debugging.

• Quick Timescale zooming in Wave window

• Cursors and Markers and application time.

• Connectivity across hierarchy in path schematic window

• Expand paths in path schematic

• Annotated values and zooming in schematics

• Cross linking of schematic to source code

• Cross linking of wave to source code

Lab 3

Debugging with DVE 3-15
Verification with VCS Workshop

• Cross linking of hierarchy to source code

• Searching text in source

• Edit source and recompile sim

• Multiple databases

• Waveform comparison

• Edge searching in waveforms

• Get drivers in waveforms

• Annotated values in source code

• Step through drivers in source code

• Interactive simulations with breakpoints and disabled breakpoints.

• SVA assertion reports

• Cross linking of assertions to wave and source code

Debugging Simulation Mismatches 5-1
Ver 1.0

After completing this lab, you should be able to:

• Locate race condition in an existing Verilog design using
the race checker utility in VCS

• Locate a simulation mismatch in an existing Verilog design

Debugging simulation
mismatches

UNIT

30 minutes

Unit 5

Learning Objectives

5

5-2 Debugging Simulation Mismatches

Getting Started

You will continue to use the Select Adder for this lab.

In the lab files, there are errors caused by race conditions. The goal is to use VCS
to identify and locate the cause of the race conditions. Once, corrected, you will
re-compile and re-simulate to verify the functionality of our corrections.

Here's a preview of what you'll do:

• In part A, you will compile and simulate to see if the adder is operating
correctly. Then, we will use the +race compile-time switch and re-compile
and re-simulate the adder. By examining the race.out file and locating the
race condition in the source code, you will be able to make the proper
correction.

• In part B, you will compile with $vcdpluson to generate a VPD dump file.
Examining the differences in DVE, you will locate the race condition. The
source code will be modified. Finally you will re-compile and re-simulate to
verify the correctness of the adder operation.

+

+

+

0

1

0

1

0

1

4

4

1

sum[7:0]

cout

a[7:4]
b[7:4]

cin
a[7:0]
b[7:0]

a[3:0]
b[3:0]

adder.v

sum_0

sum_1

c4

Debugging Simulation Mismatches 5-3
Verification with VCS Workshop

Figure 5-1: Flow Diagram of Lab Exercise

Figure 5-1: Flow Diagram of Lab Exercise

Compile and simulate
to confirm correction

Modify source code
to correct error

Compile & simulate
without debug

switches to see if
design has errors

Examine race.out and
source code to

determine cause of
error

Compile & simulate
with +race switch

Compile and simulate
to confirm correction

Modify source code
to correct error

Compile & simulate
without debug

switches to see if
design has errors

Examine race.out and
source code to locate
and correct cause of

error

Compile & simulate
with +race switch

Locate error by using
vcdiff utility

comparing the VCD
file to know good file

Compile and simulate
with $dumpvars to
generate a VCD file

5-4 Debugging Simulation Mismatches

Part A: Debugging with +race Switch

Task 1 Verify Adder Functionality

The first step of any debugging process is to compile and simulate the design
without using the debugging switches to see if there are any errors.

Go into lab5 part A directory.

1. shell> cd ../lab5/parta

2. shell> vcs –f adder.f –R

There are errors being reported.

***ERROR at time = 0 ***
a = 00, b = 00, sum = xx; cin = 0, cout =x

…

…

Task 2 Re-Compile and Re-Simulate with +race Switch

With race conditions, it is generally difficult to see from the error message that
the cause is Verilog race condition. When things don’t look quite right, you
might want to quickly check to see if the error is caused by race condition.

1. shell> vcs –f adder.f –R +race

This will generate a race.out file.

Take a look at the race.out file after the simulation has completed.

2. shell> more race.out

At time 0, three signals are reported being written and read at the same time.

0 "error_count": read addertb (addertb.v: 32) && write addertb (addertb.v:21)
0 "sum_test": write addertb.u1 (add8.v: 14) && read addertb (addertb.v:35)
0 "cout_test": write addertb (add8.v: 15) && read addertb (addertb.v:35)

Where is the race condition in each of these cases?

3. Correct the race condition in the source code, repeat step 1 & 2 to make sure the
race condition is resolved. (Hint: The race condition is in the testbench)

Debugging Simulation Mismatches 5-5
Verification with VCS Workshop

Part B: Debugging with $vcdplustraceon Task

Task 1 Verify Adder Functionality

Again, you want to verify the operation of the design first.

Go into lab5 part B directory.

1. shell> cd ../partb

2. shell> vcs –f adder.f –R

There are errors being reported.

***ERROR at time = 50 ***
a = 00, b = 00, sum = xx; cin = 0, cout =0

***ERROR at time = 150 ***
a = 00, b = 01, sum = 00; cin = 0, cout =0

…

…

Task 2 Re-Compile and Re-Simulate with +race Switch

Check the possibilities for race conditions by running a race report.

1. shell> vcs –f adder.f –R +race

Take a look at the race.out file after the simulation has completed.

2. shell> more race.out

At time 0, four signals are reported being written and read at the same time.

0 "sum_0": read addertb.u1 (adder.v: 21) && write addertb.u1 (adder.v:15)
0 "sum_1": read addertb.u1 (adder.v: 22) && write addertb.u1 (adder.v:16)
0 "sum_temp": write addertb.u1 (adder.v: 14) && read addertb.u1 (adder.v:23)
0 "c4": write addertb.u1 (adder.v: 13) && read addertb.u1 (adder.v:25)

Let’s keep these in mind and dump a VCD+ file.

Task 3 Generate VPD dump file

In the testbench, sections of the code are already written for dumping VPD file.
Take a look at it.

5-6 Debugging Simulation Mismatches

The relevant sections are as follows:

initial
begin
…
…
`ifdef vcdplusdump
 $display("\n*** VCD+ file dump is turned on ***\n");
 $vcdpluson;
 #1000;
 $vcdplusoff;
`endif
…
end

initial
begin
…
 if (error_count == 10) begin
…
 `ifdef vcdplusdump
 $vcdplusoff;
 `endif
…
end

The $vcdpluson task can be enabled with a +define+vcdplusdump compile-time
switch.

The #1000 and $vcdplusoff are used in the first section of the code to control the
size of the reference file. This was done so that the size of the file generated is
manageable for download from the Synopsys web site.

In the second section, VPD dumpping is turned off after ten error counts are
detected. Again, this is done to manage the VPD file size.

In your own debugging, you might want to consider using similar mechanisms for
controlling VPD file size.

Compile and generate the VPD file.

1. shell> vcs –f adder.f –debug_all –R +define+vcdplusdump

You will got error message and vcdplus.vpd in current directory.

Debugging Simulation Mismatches 5-7
Verification with VCS Workshop

Task 4 Compare VCD File with Reference File

There is a reference VCD file already generated called “reference.dump”. You
will compare this reference file with the VCD file that you generated.

1. conver VPD to VCD

shell> vpd2vcd vcdplus.vpd vcdplus.vcd

2. shell> vcdiff reference.dump vcdplus.vcd

vcdiff - Version X-2005.06-SP2
 Copyright (c) 1991-2003 by Synopsys Inc.
 ALL RIGHTS RESERVED

vcdiff reference.dump vcdplus.vcd
< reference.dump: scopes:3 signals:18
> vcdplus.vcd: scopes:3 signals:18

--- addertb.sum_test --- 0 ---
< 0 00000000

> 0 xxxxxxxx

--- addertb.u1.sum --- 0 ---
< 0 00000000

> 0 xxxxxxxx

--- vcdiff summary ---
--- compares: 70
--- diffs: 2

At time 0, the adder.v generated a sum value of xxxxxxxx instead of 00000000 as
was expected in the reference file.

Recall that the race.out file reported sum_0 and sum_1 had potential race
conditions. The problem is likely to be in how we generated the sum.

Task 5 Examine File Differences in DVE

Look at the differences graphically.

Invoke DVE in post-processing mode.

1. shell> dve&

5-8 Debugging Simulation Mismatches

2. Select File -> Open Database…

An Open Database Dialog window will open up.

3. In the Files pane, select “reference.dump” then click on Open

As soon as you do this, DVE will translate VCD to VPD file. (the translated file
name is “reference.dump.vpd”)

Let’s also open the VCD file for the DUT.

4. In the Open Database Dialog window select “vcdplus.vpd” then click on
Open

Do you see that the new opened file is given the designator
“V2=vcdplus.vpd” in the Open File pane near the top of the dialog window?

Look at the signals in Waveform window.

5. Click + before “addertb” in Hierarchy pane.

The modules and the signals now displayed in the Hierarchy pane and Variable
pane are the signals captured in the last file that you opened – vcdplus.vpd.
You can see this by looking at the title bar at the top of the Hierarchy pane.

6. Show all signals in u1 module into the Waveform window, left click select “u1”
in Hierarchy pane and select “Add To Waves” in right click menu.

Each signal in the Waveform window should have the V2 designator (leave
mouse point on signals for one second), indicating that these are the
vcdplus.vpd signals.

Look at the DUT signals.

7. In Hierarchy pane, select “V1=reference.dump”

Look at the same set of signals from u1 module.

8. Drag and drop the u1 module onto the “New Group” in the Waveform window

This create another group u1_1 for new group signal, you can edit group name to
ref_u1.

All the signals are identical with the exception of the sum signal. Use Zoom features
to view the appropriate amount of data.

Debugging Simulation Mismatches 5-9
Verification with VCS Workshop

Task 6 Examine Source File to Locate Error

1. Double click sum[7:0] signal from the Waveform window(if you forget which
is from V2, just put your pointer on it for one second), The adder.v module is
opened in the source code pane.

Recall what the race.out file reported. Where is the error?

(Hint: this is a form of the Continuous Assignment Evaluation race condition)

2. Correct the error then re-compile and re-simulate to verify that the error is
removed.

Fast RTL Verification 6-1
37489-000-S31

After completing this lab, you should be able to:

• Improve simulation performance by modifying Verilog
code identified by VCS profiler utility as simulation
bottlenecks

• Compile an existing Verilog design with the +rad
compilation switch and execute the simulation binary to
demonstrate an improvement in simulation performance

•

Fast RTL Verification

UNIT

60 minutes

Unit 6

Learning Objectives

6

6-2 Fast RTL Verification
 Synopsys Verification with VCS Workshop

Getting Started

You will use the lossless codec for this lab:

You will improve the simulation performance at the RTL-level via two methods:
changing the coding style and using VCS optimization switches.

This lab has two parts.

In Part A, you will use the +prof utility to locate simulation bottlenecks. You
will then modify the Verilog code by changing the coding style to improve the
simulation performance.

Here's a preview:

• Profile codec simulation with VCS profiler and record CPU run time
• Modify codec Verilog code segment identified as bottleneck
• Re-simulate and record CPU run time
• Repeat the first three steps until simulation speed is acceptable

In Part B, you will use the +rad VCS optimization switches to improve
simulation performance.

Here's a preview:

• Simulate codec design and record CPU run time
• Compile & simulate codec with +rad switch and record CPU run time

Fast RTL Verification 6-3
Verification with VCS Workshop

Figure 6-1: Flow Diagram of Lab Exercise

Compile codec with
+prof switch

Modify code segment
identified as

simulation bottlenck

Compile & simulate
modified codec and

record CPU time

Repeat until CPU time
is acceptable

Part A

Compile & simulate
codec and record

CPU time

Compile & simulate
codec with +rad

switch and record
CPU time

Part B

6-4 Fast RTL Verification
 Synopsys Verification with VCS Workshop

Part A: Using VCS profiler

Task 1 Record codec Simulation CPU Time

Go into the lab6 directory.

1. shell> cd ./lab6/parta

Compile and simulate the codec design without any optimization.

2. shell> vcs –f codec.f CAM.v fileio.o –R

3. Record CPU time & Data structure size

CPU time: ...

Data structure size: ...

For an input stimulus file of 323 bytes, this simulation time seems too long. Let’s
improve this simulation time.

Task 2 Profile Simulation CPU Time with +prof

First, run the profiling utility to see how simulation time is being spent.

1. shell> vcs –f codec.f CAM.v fileio.o –R +prof

Task 3 Evaluate codec Simulation Performance

Once the simulation run completes, examine the vcs.prof file.

1. Open vcs.prof with an editor

In Top Level View, the design uses greater than 90% of the CPU run time. This
is good, you want simulation executing design operations rather than overhead.

Fast RTL Verification 6-5
Verification with VCS Workshop

==

 TOP LEVEL VIEW

==

 TYPE %Totaltime

--

 DPI 0.00

 PLI 0.00

 VCD 0.00

 KERNEL 0.00

 MODULES 100.00

 PROGRAMS 0.00

 PROGRAM GC 0.00

--

In Module View, the cam module requires most of the simulation time. This may
or may not be a problem. Since this codec relies heavily on processing data in the
cam module but it is an area to watch out for.

===

 MODULE VIEW

===

Module(index) %Totaltime No of Instances Definition

cam (1) 98.67 2 CAM.v:5.

Addr_gen (2) 1.14 2 codec.v:347

In the Module to Construct Mapping, we start to see something a little more out of wack. The
simulation time within the cam module is spent in the always block at lines 80-83 of the CAM.v
source code. This could be a problem.

===
 MODULE TO CONSTRUCT MAPPING
===

 1. cam

Construct type %Totaltime %Moduletime LineNo

Always 40.80 41.35 CAM.v : 80-83.
Always 32.26 32.69 CAM.v : 36-61.
Always 12.33 12.50 CAM.v : 90-92.
Always 11.95 12.12 CAM.v : 86-88.
Always 0.76 0.77 CAM.v : 66-76.
Combinational 0.57 0.58 CAM.v : 5, 31, 33.

6-6 Fast RTL Verification
 Synopsys Verification with VCS Workshop

Please take a look at lines 80-83 of the CAM.v source code.

2. Open CAM.v with an editor and locate line 80

Here’s what this section of the code looks like:

always @(din or match_search or match3_dly or

 bit0 or bit1 or bit2 or bit3 or bit4 or bit5 or bit6 or bit7)

 for (l = 0; l <= 4095; l = l+1)

 match1[l] = ((match3_dly[l] | match_search) & (din == {bit7[l], bit6[l],

 bit5[l], bit4[l], bit3[l], bit2[l], bit1[l], bit0[l]}));

This looping structure is not efficient.

Task 4 Modify CAM.v module and Save as CAM1.v

1. Substitute the always block with the following:

assign match1 = (match3_dly | {4096 {match_search} }) &

 (({4096 {din[0]} } ~^ bit0) & ({4096 {din[1]} } ~^ bit1) &

 ({4096 {din[2]} } ~^ bit2) & ({4096 {din[3]} } ~^ bit3) &

 ({4096 {din[4]} } ~^ bit4) & ({4096 {din[5]} } ~^ bit5) &

 ({4096 {din[6]} } ~^ bit6) & ({4096 {din[7]} } ~^ bit7));

You will also need to change the match1 from reg type to wire.

2. Make the changes and save to “CAM1.v”

Task 5 Compile & Simulate to Record CPU Time

Compile & simulate the codec design with the modified cam module.

1. shell> vcs –f codec.f CAM1.v fileio.o –R

2. Record CPU time & Data structure size

CPU time: ...

Data structure size: ...

Fast RTL Verification 6-7
Verification with VCS Workshop

The simulation run time improved but not significantly. The bottleneck may have
just move from one area to another. Please continue to look for the bottlenecks.

Task 6 Profile codec Simulation Performance

Run the profiling utility again to see how simulation time is being spent.

1. shell> vcs –f codec.f CAM1.v fileio.o –R +prof

Task 7 Evaluate codec Simulation Performance

Once the simulation run completes, examine the vcs.prof file.

1. Open vcs.prof with an editor

In the Module to Construct Mapping, the simulation time in the cam module is
now primarily spent in the always block, line 37-62 of the CAM1.v source code.

===
 MODULE TO CONSTRUCT MAPPING
===
__
 1. cam

Construct type %Totaltime %Moduletime LineNo

Always 52.37 54.79 CAM1.v : 38-63.
Always 19.56 20.46 CAM1.v : 100-102.
Always 17.67 18.48 CAM1.v : 96-98.
Combinational 5.36 5.61 CAM1.v : 5, 33, 35, 90.
Always 0.63 0.66 CAM1.v : 68-78.

2. Open CAM1.v with an editor and locate line 38

Here’s what this section of the code looks like:

always @(posedge clk or negedge rstN)

begin

 if (!rstN) begin

 bit0 <= 0; bit1 <= 0; bit2 <= 0; bit3 <= 0;

 bit4 <= 0; bit5 <= 0; bit6 <= 0; bit7 <= 0;

 end

 else if (!ldN) begin

 bit0[0] <= din[0];

6-8 Fast RTL Verification
 Synopsys Verification with VCS Workshop

 bit1[0] <= din[1];

 bit2[0] <= din[2];

 bit3[0] <= din[3];

 bit4[0] <= din[4];

 bit5[0] <= din[5];

 bit6[0] <= din[6];

 bit7[0] <= din[7];

 for (i = 1; i <= 4095; i = i+1) begin

 bit0[i] <= bit0[i-1];

 bit1[i] <= bit1[i-1];

 bit2[i] <= bit2[i-1];

 bit3[i] <= bit3[i-1];

 bit4[i] <= bit4[i-1];

 bit5[i] <= bit5[i-1];

 bit6[i] <= bit6[i-1];

 bit7[i] <= bit7[i-1];

 end

 end

end

Examine this code closely, you will notice that this is really just a shift operation.

Modify CAM1.v module and Save as CAM2.v

Please recode the cam module as follows:

always @(posedge clk or negedge rstN)

begin

 if (!rstN) begin

 bit0 <= 0; bit1 <= 0; bit2 <= 0; bit3 <= 0;

 bit4 <= 0; bit5 <= 0; bit6 <= 0; bit7 <= 0;

 end

 else if (!ldN) begin

 bit0 <= {bit0[4094:0], din[0]};

bit1 <= {bit1[4094:0], din[1]};

bit2 <= {bit2[4094:0], din[2]};

 bit3 <= {bit3[4094:0], din[3]};

 bit4 <= {bit4[4094:0], din[4]};

 bit5 <= {bit5[4094:0], din[5]};

 bit6 <= {bit6[4094:0], din[6]};

 bit7 <= {bit7[4094:0], din[7]};

 end

end

1. Make the changes and save to “CAM2.v”

Fast RTL Verification 6-9
Verification with VCS Workshop

Task 8 Compile & Simulate to Record CPU Time

Compile and simulate codec with CAM2.v.

1. shell> vcs –f codec.f CAM2.v fileio.o –R

2. Record CPU time & Data structure size

CPU time: ...

Data structure size: ...

The simulation run time has decreased significantly.

Profile codec Simulation Performance

Please take one last look at the profile report.

1. shell> vcs –f codec.f CAM2.v fileio.o –R +prof

2. Open vcs.prof file with editor

The simulation time is now dominated by two always blocks.

We have increased the performance sufficiently for now. Move on and try the
effects of the optimization switches.

6-10 Fast RTL Verification
 Synopsys Verification with VCS Workshop

Part B: Using VCS Optimization Switches

Task 1 Record codec Simulation CPU Time

Go into the lab5 partb directory.

1. shell> cd ../partb

In this lab, we have reproduced the CAM2.v module and included it in the codec.f
file. We also made the input stimulus file test larger. It is now seven times the
size that was used in part A. Theoretically, this should simulate seven times
slower. As you shall see, with the aid of performance options in VCS, the exact
opposite is true. We will be able to run simulation at a much higher speed.

Please record the simulation time without optimization switches.

2. shell> vcs –f codec.f fileio.o –R

3. Record CPU time & Data structure size

CPU time: ...

Data structure size: ...

This simulation took a significant amount of time to complete. In the following
steps you will improve this situation time.

Task 2 Simulate with +rad Optimization

Try using the +rad optimization switch.

1. shell> vcs –f codec.f fileio.o –R +rad

2. Record CPU time & Data structure size

CPU time: ..

Data structure size: ..

This is quite a difference in CPU time. The improvement in simulation speed
depends heavily on your coding style and design complexity. Your own designs
will experience a different speed up result.

Fast Gate-Level Verification 7-1
37489-000-S31

After completing this lab, you should be able to:

• Verify the Verilog Gate-Level netlist matches the RTL-
Level simulation by compiling and simulating the Gate-
Level netlist with the RTL-level testbench without enabling
any optimization switch and without timing using VCS

• Demonstrate the same Verilog Gate-Level netlist when
compiled and simulated with the +rad optimization switch
exhibit an improvement in simulation performance

• Verify an existing Verilog Gate-Level netlist with timing
matches the RTL-Level simulation

Fast Gate-Level Verification

UNIT

45 minutes

Unit 7

Learning Objectives

7

7-2 Fast Gate-Level Verification
 VCS Verilog Verification Workshop

Getting Started

You will use a FIFO for this lab.

Here's a preview:

• Verify that the Verilog RTL code passes verification

• Using the same testbench, verify that a gate-level netlist generated from the
same source code also simulates correctly.

• Compile and simulate the same gate-level netlist with optimization options and
observe an increase in simulation performance.

• Add back-annotation system task to source code

• Compile and simulate SDF back-annotated gate-level netlist and observe that
this also simulates correctly.

Figure 7-1: Flow Diagram of Lab Exercise

Compile & simulate
gate-level netlist with

SDF file

Compile & simulate
gate-level netlist

Back-annote SDF file

Compile & simulate
gate-level netlist with
optimization options

Fast Gate-Level Verification 7-3
VCS Verilog Verification Workshop

Gate-Level Simulation

Task 1 Examine Gate-level Verilog Files

Go into the lab8 directory.

1. shell> cd lab7

Take a look at the gate-level Verilog files created by Design Compiler.

2. shell> more fifo32X8_gate.v

You should see the gate cells instantiated in all the _gate.v files. These were
created through synthesis with Design Compiler with the vendor’s technology
libraries.

In order to simulate the gate-level Verilog files, you must also have the vendor’s
Verilog simulation files. In our case, this simulation file is located in
vcs/lib/vendor_lib under the file name core.v.

Take a look at core.v.

3. shell> more ../lib/vendor_lib/core.v

As you scan through the core.v file, you will see both UDP (User Defined
Primitives), functional modules, and gate-level cell modules.

Where are the timing information defined?

Task 2 Compile and Simulate the RTL Netlist

Let’s verify that the RTL netlist works.

Here’s the content of fifo.f:

fifo32X8tb.v

fifo_cntrl.v

fifo32X8.v

fifo_mem.v

ram16X8.v

-P ../lib/fileio2.0/fileio.tab
Compile and simulate the RTL code.

7-4 Fast Gate-Level Verification
 VCS Verilog Verification Workshop

1. shell> vcs –f fifo.f fileio.o –R

2. Record CPU time & Data structure size

CPU time: ...

Data structure size: ...

Task 3 Compile and Simulate the Gate-level Netlist

Let’s verify that this gate-level netlist works.

Here’s the content of fifo_gate.f:

fifo32X8tb.v

fifo32X8_gate.v

-P ../lib/fileio2.0/fileio.tab
Notice that all the RTL codes are replaced by the single fifo32X8_gate.v gate-
level netlist.

Compile and simulate the Gate-level netlist without SDF backannotation

1. shell> vcs –f fifo_gate.f fileio.o –R

2. Record CPU time & Data structure size

CPU time: ...

Data structure size: ...

This is a integrity test to verify that the gate-level netlist does perform the
operation in the same way that the RTL code did. Notice that the same testbench
is used for both the RTL and gate-level verification.

But, this is not the ideal way to perform the gate-level to RTL confidence test. A
better way may be to use a formal verification tool like Formality,

If you really want to use VCS to check the functionality of the gate-level netlist,
use the following compile-time options.

Fast Gate-Level Verification 7-5
VCS Verilog Verification Workshop

Task 4 Compile and Simulate with Optimization Options

1. shell> vcs –f fifo_gate.f fileio.o –R +rad +nospecify

2. Record CPU time & Data structure size

CPU time: ...

Data structure size: ...

Notice how much faster the verification is?

Task 5 Back-Annotate SDF File

Let’s back-annotate the SDF file information for simulation with timing.
The only thing that you will need to do is to add the $sdf_annotate system task
into the testbench. (Looks for the reserved space for this code)

1. Insert the following code in the fifo32X8tb.v testbench as follows:

initial

begin

 $sdf_annotate(“fifo32X8.sdf”, fifo);

end

Task 6 Simulate without Timing Check

If you are simulating your design with timing just to make sure that circuit delays
does not introduce errors and you are using a separate timing verification tool,
then, you should use the following compile-time options to get the best
performance:

1. shell> vcs –f fifo_gate.f fileio.o –R +notimingcheck

2. Record CPU time & Data structure size

CPU time: ...

Data structure size: ...

7-6 Fast Gate-Level Verification
 VCS Verilog Verification Workshop

Task 7 Simulate with Full Timing Check

If you are simulating your design with full timing check then use the following
compile-time options.

1. shell> vcs –f fifo_gate.f fileio.o –R +neg_tchk

2. Record CPU time & Data structure size

CPU time: ...

Data structure size: ...

Full timing verification will always take the longest time to run. Yet, it does not
guarantee full timing verification. A better approach is to use timing verification
tools for timing check and use VCS to verify circuit operations.

 VCS Training

Coverage Metrics 8-1

Upon completion of this exercise you will be able to:
• Include coverage metrics in your VCS simulations
• Interpret the coverage metrics results and merge results from
multiple simulations
• Use the auto-grading feature of VCS with Coverage Metrics to
find a subset of test vectors that meet a user-defined coverage goal.

Coverage Metrics

UNIT

30 minutes

Unit 8

Learning Objectives

8

Coverage Metrics 8-2

♦ Part I- FSM Coverage
1. Go to the subdirectory lab8

What other types of coverage are available with VCS Coverage Metrics? __________

What are the vcs & simv options to invoke each type of coverage? _______________

What option would you use to specify line and condition coverage only?__________

Let’s take a closer look at FSM (Finite State Machine) coverage.

1. Compile so that FSM coverage is enabled.

VCS COMMAND LINE:___

2. Rerun the simulation with FSM coverage.

SIMV COMMAND LINE:__

3. Invoke cmView with FSM coverage.

CMVIEW COMMAND LINE:_______________________________________

4. In the main cmView window, left click on the FSM Coverage icon.
5. Left click on Module List to display all modules where a finite state machine was

found. You should see that the CPU module has one state machine.

6. Double click left on the CPU module (under the List of all modules). This will bring
up a window with coverage details for the FSM in the CPU module. Double click the
Transitions tab you will see a matrix of transitions. A green check indicates the
transition was covered during your simulation. A red X indicates that the transition

VCS Training

Coverage Metrics 8- 3

was not covered. An empty (gray) box indicates that VCS found that transition was
not possible.

Which state transitions were not covered?________________________________

__

7. Click on the States tab. This displays each possible state in the FSM and whether it
was covered. There are five states in this FSM and each one was covered at least once
during the simulation run.

8. Click on the Reachability tab. This shows information about transitions between two
states through intervening states. Lets look at an example…

9. Click on the yellow box that represents the transition from MEMORY to FETCH.
The 1 / 2 displayed in this box indicates that there are two possible transitions from
MEMORY to FETCH and that only one was covered. After clicking this transition
you will see that VCS has determined two possible transitions:

MEMORY -> WRITE_BACK -> FETCH (covered)

MEMORY -> FETCH (not covered)
10. Exit the cmView GUI

♦ Part II - Merging Coverage Results and Auto-Grading

So far we have been writing coverage results into default filenames under the
simv.cm directory. For example…

simv.cm/coverage/verilog/test.line
simv.cm/coverage/verilog/test.fsm

This is fine as long as there is only one test vector to run. But what if there are
multiple test vectors? You don’t want to overwrite the default filenames with each
new test vector that is simulated. It is more useful save the coverage results for each
simulation with a new vector and then merge the results . In this section we will
examine how to do this.

1. First clean up the directory you are working in. Make sure you have exited the
cmView GUI and then run the clean script.

2. The directory CODE contains five different tests. Copy the first test into the run
directory

cp CODE/text1 text_segment

Coverage Metrics 8-4

cp CODE/data1 data_segment
3. Run a vcs compile and enable all types of coverage (see “run_all” script)

VCS COMMAND LINE___

4. Examine the contents of simv.cm/coverage. It should be empty at this point.

5. Run simv with all coverage types enabled. Be sure to include the option to rename the
coverage metrics report files. Use test1 as the filename root for the report files.

SIMV COMMAND LINE__

6. One by one, copy the other vectors into the run directory and rerun the simulation
with all coverage types enabled. For each simulation run, be sure to rename the
coverage report files. (A script called run_all is provided.)

What file contains condition coverage results for test5?_____________________

What file contains line coverage results for test2?__________________________

7. We will now merge the data together. At the command line type:

vcs –cm_pp –cm_dir test1 –cm_dir test2 –cm_dir test3 –cm_dir test4 –cm_dir test5
–cm_name merged

This will create a merging of all the 5 tests into a merged database and the merged
coverage report will be stored in "simv.cm/reports" with the filename prefix "merged"
(i.e. simv.cm/reports/merged.long_l will contain the merged coverage results from the 5
tests).

8. You can also observe these data and do test grading through GUI. Invoke the cmView
GUI. Type:

vcs –cm_pp gui –cm line+tgl+cond+fsm –cm_dir test1 –cm_name test1

Go to the “File” on the menu bar and drop down to “Open Coverage Statement”. This
will open the hierarchy and coverage window. On the coverage menu bar select “add”,
this opens the window that will allow you to add the line coverage data for grading. In
the filter window or thru selecting, set the path for ./test2/*.line select test2.line and add
it. You can do the same steps to add other tests (test3 to test5). Close the window after
adding the line coverage. You can now compare tests using the compare menu.

9. We will use cmView’s auto-grading feature to determine a subset of test vectors that

meet a user-defined coverage goal. From the main cmView window select

VCS Training

Coverage Metrics 8- 5

Tools -> AutoGrading
This brings up the cmAutoGrade window.

10. Click any one of the three tabs for Statement, Condition, or Toggle coverage to view
the data for each test listed in the Test Name column.

The four kinds of coverage data are described as follows:

Incremental data is the amount of additional coverage provided by a given test
over the previous test.
Difference data is the difference in coverage between a given test and the
accumulated total up to the previous total.
Test coverage data is the coverage for a given test. That is, the data reflects the
total coverage for that test only.
Accumulated data is the cumulative result of all tests added in the current session
up to that point in the order of tests.

11. Enter 65 desired test coverage goal and select Line Coverage. Then click Run
AutoGrade The Test Grading window appears.

What subset of test vectors are required to obtain 65% line coverage? _____________

12. Exit the cmView GUI.

Congratulations. You’re done with the Coverage Metrics lab!

	lab_01_basic.pdf
	VCS Simulation Basics
	Getting Started
	Part A: The two-step Simulation Process
	Task 1 Compile to Generate Simulation Executable
	Task 2 Run Simulation
	Task 3 Check Simulation Results
	Task 4 Create Simulation Executable with Different Name
	Part B: Working with Library Directories
	Task 1 Compile & Simulate using Design Library Directory
	Task 2 Compiling with –f File Switch

	lab_02_ucli
	VCS Debugging Basics
	Getting Started
	Part A: Debugging with Verilog System Task Calls
	Task 1 A useful VCS Switch
	Task 2 Compile and Run First-Pass Verification
	Task 3 Debugging the Error
	Part B: Debugging with VCS UCLI Debugger
	Task 1 Compile and Run First-Pass Verification
	Task 2 Compile with UCLI Debugger Switch Enabled
	Task 3 Debugging with UCLI Debugger
	Part C: Getting Help
	Task 1 Submitting Files for Help

	lab_03_dve
	Debugging with DVE
	Getting Started
	FIFO REQUIREMENTS
	COMPILE AND RUN
	DEBUG THE EMPTY FLAG BUG
	Display the testbench signals in a Wave window.
	Zoom around in Wave window.
	Put a marker at the time of failure.
	Show connections of emptyp in path schematic window.
	Annotate pin values in schematic and expand path.
	Show source code from schematic.
	Edit source to fix the bug.
	Recompile and simulate in DVE to verify bug fix.
	Close the buggy simulation results.

	RUN SIMULATION IN DVE
	DEBUG THE COUNTER MISMATCH BUG
	Find the checker that printed the error message.
	Compare count signals to find the mismatch.
	Search forward to get to mismatch.
	Get drivers of the count signal.
	Annotate values and step through drivers to find the active one.
	Edit source to fix the bug.
	Recompile and simulate in DVE to verify bug fix.
	Set a breakpoint on the line we just fixed to verify it.
	Disable the breakpoint and continue running.

	DEBUG THE COUNTER MISMATCH BUG using SVA
	Setup design, compile and setup simulation
	Follow the checker that printed the error message.

	SUMMARY
	We detected, found, fixed, and verified 2 bugs in this Verilog FIFO using the following features of DVE.

	lab_05_mismatch
	Debugging simulation mismatches
	Getting Started
	Part A: Debugging with +race Switch
	Task 1 Verify Adder Functionality
	Task 2 Re-Compile and Re-Simulate with +race Switch
	Part B: Debugging with $vcdplustraceon Task
	Task 1 Verify Adder Functionality
	Task 2 Re-Compile and Re-Simulate with +race Switch
	Task 3 Generate VPD dump file
	Task 4 Compare VCD File with Reference File
	Task 5 Examine File Differences in DVE
	Task 6 Examine Source File to Locate Error

	lab_06_rtl
	Fast RTL Verification
	Getting Started
	Part A: Using VCS profiler
	Task 1 Record codec Simulation CPU Time
	Task 2 Profile Simulation CPU Time with +prof
	Task 3 Evaluate codec Simulation Performance
	Task 4 Modify CAM.v module and Save as CAM1.v
	Task 5 Compile & Simulate to Record CPU Time
	Task 6 Profile codec Simulation Performance
	Task 7 Evaluate codec Simulation Performance
	Modify CAM1.v module and Save as CAM2.v
	Task 8 Compile & Simulate to Record CPU Time
	Profile codec Simulation Performance
	Part B: Using VCS Optimization Switches
	Task 1 Record codec Simulation CPU Time
	Task 2 Simulate with +rad Optimization

	lab_07_gate
	Fast Gate-Level Verification
	Getting Started
	Gate-Level Simulation
	Task 1 Examine Gate-level Verilog Files
	Task 2 Compile and Simulate the RTL Netlist
	Task 3 Compile and Simulate the Gate-level Netlist
	Task 4 Compile and Simulate with Optimization Options
	Task 5 Back-Annotate SDF File
	Task 6 Simulate without Timing Check
	Task 7 Simulate with Full Timing Check

	lab_08_cov
	What option would you use to specify line and condition coverage only?__________
	Let’s take a closer look at FSM (Finite State Machine) coverage.
	VCS COMMAND LINE:___
	SIMV COMMAND LINE:__
	CMVIEW COMMAND LINE:_______________________________________
	VCS COMMAND LINE___
	SIMV COMMAND LINE__
	Tools -> AutoGrading
	This brings up the cmAutoGrade window.
	Congratulations. You’re done with the Coverage Metrics lab!

