
Accelerator Functional Unit
Developer Guide
Intel FPGA Programmable Acceleration Card
N3000 Variants

Updated for Intel® Acceleration Stack for Intel® Xeon® CPU with FPGAs: 1.3.1

Online Version

Send Feedback UG-20248

ID: 683190

Version: 2022.07.15

https://www.intel.com/content/www/us/en/docs/programmable/683190/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

1. About This Document..3
1.1. Acronym List ..3

2. Introduction... 4
2.1. Base Knowledge and Skills Prerequisites... 4

2.1.1. Considerations.. 5

3. High Level Description.. 6
3.1. Steps for Creating Your AFU.. 6
3.2. N3000 Block Diagram...7

3.2.1. In-Line Data Path.. 9
3.2.2. Supported Ethernet Network Configurations.. 10
3.2.3. Provided Files..10
3.2.4. Internal Interfaces... 11

3.3. Factory Image Description...32

4. Creating an N3000 FPGA Design... 35
4.1. Create New Project Directory...35
4.2. Create Your AFU Design Files...35

4.2.1. ccip_std_afu.sv... 36
4.2.2. AFU File..36
4.2.3. QSF File..37
4.2.4. SDC File... 37

4.3. Build with make...37
4.4. Check Timing.. 41
4.5. Loading Your AFU into the Intel FPGA PAC N3000... 43

4.5.1. Loading Your FPGA Image with JTAG...44
4.5.2. AFU Clocks..54
4.5.3. Creating an AFU with High Level Synthesis (HLS)... 59

5. Capturing Signals in AFU with Signal Tap..76
5.1. Adding Signal Tap to the Design...77
5.2. Loading FPGA Image.. 86
5.3. Set Up Connections..86
5.4. How to Exit from the Debug Session...91
5.5. Troubleshooting Remote Debug Connections..91

6. Document Revision History for the Accelerator Functional Unit Developer Guide:
Intel FPGA Programmable Acceleration Card N3000 Variants..................................94

Contents

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. About This Document
This document serves as a high level guide for system architects and hardware
developers in developing Accelerator Functional Units (AFUs) for both:

• Intel FPGA Programmable Acceleration Card N3000

• Intel FPGA Programmable Acceleration Card N3000-N

This document is organized as follows:

1. Document Introduction and required background knowledge

2. High Level Description

3. Developing AFUs

4. Debugging AFUs

1.1. Acronym List

Acronym Expansion Description

Intel FPGA PAC
N3000-N (referred
to as N3000 for this
document)

Intel FPGA Programmable
Acceleration Card N3000-
N

Intel FPGA Programmable Acceleration Card N3000-N is a full-duplex
100 Gbps in-system re-programmable acceleration card for multi-
workload networking application acceleration.

AFU Accelerator Functional
Unit

Hardware Accelerator implemented in FPGA logic which offloads a
computational operation for an application from the CPU to improve
performance.

AF Acceleration Function Compiled Hardware Accelerator image implemented in FPGA logic that
accelerates an application.

API Application Programming
Interface

A set of subroutine definitions, protocols, and tools for building software
applications.

DPDK Data Plane Development
Kit

The Data Plane Development Kit consists of libraries to accelerate
packet processing workloads running on many CPU architectures,
including x86, POWER and ARM processors. DPDK runs mostly on Linux
with a FreeBSD port available for a subset of DPDK features. The Open
Source BSD License DPDK licenses DPDK.

FIU FPGA Interface Unit FIU is a platform interface layer that acts as a bridge between platform
interfaces like PCIe* and AFU-side interfaces such as CCI-P.

OPAE Open Programmable
Acceleration Engine

The OPAE is a set of drivers, utilities, and API's for managing and
accessing AFs.

683190 | 2022.07.15

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

2. Introduction
Before using this guide, refer to the user guide that corresponds with your card:
Intel® Acceleration Stack User Guide: Intel FPGA Programmable Acceleration Card
N3000 or Intel Acceleration Stack User Guide: Intel FPGA Programmable Acceleration
Card N3000-N. Both user guides provide an overview of the capabilities of the Intel
FPGA PAC N3000 and Intel FPGA PAC N3000-N, referred to as N3000 throughout this
document. Both user guides provide instructions for installation and setup of hardware
and software components of the stack, including the Open Programmable Acceleration
Engine (OPAE) tools used in running diagnostic tools and remotely loading FPGA
images. It is essential to familiarize yourself with the concepts developed and to
complete the installation and setup procedures covered in both user guides.

To perform AFU development, install the Intel Acceleration Stack for Development as
described in the user guide that corresponds with your card: Intel Acceleration Stack
User Guide: Intel FPGA Programmable Acceleration Card N3000 or Intel Acceleration
Stack User Guide: Intel FPGA Programmable Acceleration Card N3000-N.

Related Information

• Intel Acceleration Stack User Guide: Intel FPGA Programmable Acceleration Card
N3000

• Intel Acceleration Stack User Guide: Intel FPGA Programmable Acceleration Card
N3000-N

2.1. Base Knowledge and Skills Prerequisites

The Intel Acceleration Stack is an advanced application of FPGA technology. The
platform-level complexity has been abstracted away for the AFU developer by the
inclusion of all interfaces in the FPGA factory image and a standard Core Cache
Interface (CCI-P) interface for host connectivity to your AFU.

This guide assumes the following FPGA logic design-related knowledge and skills:

• FPGA compilation flows including the Intel Quartus® Prime Pro Edition design flow.

• Static Timing closure, including familiarity with the Timing Analyzer tool in Intel
Quartus Prime Pro Edition, applying timing constraints, Synopsys* Design
Constraints (.sdc) language and Tcl scripting, and design methods to close on
timing critical paths.

• RTL and coding practices to create synthesized logic.

• High level synthesis (HLS) and Platform Designer design entry tools are
supported.

• RTL simulation tools.

• Signal Tap Logic Analyzer tool in the Intel Quartus Prime Pro Edition software.

683190 | 2022.07.15

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/docs/programmable/683040/current/about-this-document.html
https://www.intel.com/content/www/us/en/docs/programmable/683040/current/about-this-document.html
https://www.intel.com/content/www/us/en/docs/programmable/683362/current/about-this-document.html
https://www.intel.com/content/www/us/en/docs/programmable/683362/current/about-this-document.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

2.1.1. Considerations

If you are familiar with other Intel Acceleration Products, there are similarities and
differences between the Intel Programmable Acceleration Card with Intel Arria® 10 GX
FPGA operation:

• Similarities:

— CCI-P interface between user logic and Intel supplied PCIe interface

— OPAE kernel driver and tools for diagnostics and remote debugging

— FPGA region dedicated to OPAE management logic

• Differences:

— Partial reconfiguration is not supported

• The FPGA is a flat design loaded by on board flash

• User must include encrypted blocks for board management

— ASE simulation is not supported

— Automated simulation and synthesis environment set up are not supported

Note: The OPAE version for the N3000 is not compatible, with previous and
current versions of OPAE supporting Intel PAC with Intel Arria 10 GX FPGA.

2. Introduction

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

5

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. High Level Description
The N3000 provides you with a rapid design methodology for creating complex FPGA
and Intel Xeon® networking applications. You are provided the following:

• An Intel certified board with Intel Arria 10 GT FPGA, PCIe interfaces, external
memories, board management controller and Ethernet network interface devices.

• FPGA factory image design demonstrating all interfaces.

• Software tools for running board diagnostics with FPGA factory image, performing
FPGA remote update, and reading board sensors.

• Internal FPGA Nios® II controller and firmware for Ethernet re-timer provisioning
and board control functions. You must include this block in your design.

• The FPGA design flow, which supports flexible Ethernet data flow configurations
supporting your developed packet processing functions.

The Intel supplied board, FPGA IP blocks and software allow you to focus on your
value added functionality.

3.1. Steps for Creating Your AFU

The following steps are suggested for designing a custom FPGA application for the
N3000:

1. Become familiar with the board and FPGA block diagrams, interfaces and code
provided within the N3000 factory image.

2. Review the Intel Acceleration Stack for Intel Xeon CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual. You must follow the interface requirements
and include required registers in your design for proper N3000 operation.

In addition, the OPAE Basic Building Blocks wiki provides CCI-P tutorials and basic
building blocks (BBB) for interfacing your AFU. You are strongly encouraged to
review this resource. The Memory Properties Factory BBB is an essential
component for transaction ordering in AFUs requiring more complex host
interfacing functions.

3. Define and plan your FPGA application.

4. Copy the Initial_Shell_AFU files and directory structure. This directory
structure is the starting point for your design.

5. Implement your FPGA application. You can use one or a combination of the
following design entry methods:

a. RTL (System Verilog/VHDL)

b. Platform Designer

c. HLS

Note: Existing design blocks can be added as required.

683190 | 2022.07.15

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://github.com/OPAE/intel-fpga-bbb/wiki
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

6. Implement host software code.

7. Simulate your design at the unit level.

8. Create timing constraints files.

9. Update the Intel Quartus Prime Settings File (afu.qsf) to add your new blocks.

10. Compile, synthesize, place and route your new design using provided makefile.

11. Validate timing closure.

12. Validate power consumption.

13. The provided makefile compilation script includes a post-compilation script that
creates a raw binary file.

14. The raw binary file is used as an input to the Intel Acceleration Stack utility
PACSign. PACSign adds a required header to the raw binary file. The output file
from PACSign is validated by the N3000 Intel MAX® 10 Root of Trust for storage in
the N3000 flash storage.

15. Flash the binary file produced by PACSign into FPGA flash using fpgasupdate.

16. Use the rsu utility to load the new FPGA binary file from flash into the FPGA.

17. If needed, use the Signal Tap tool to diagnose and resolve issues.

Related Information

Intel Acceleration Stack for Intel Xeon CPU with FPGAs Core Cache Interface (CCI-P)
Reference Manual

3.2. N3000 Block Diagram

The board level N3000 block is shown below:

3. High Level Description

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

7

https://www.intel.com/content/www/us/en/docs/programmable/683193/current/acceleration-stack-for-cpu-with-fpgas.html
https://www.intel.com/content/www/us/en/docs/programmable/683193/current/acceleration-stack-for-cpu-with-fpgas.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1. N3000 Block Diagram

DDR4
4x16

DDR4
4x16

DDR4
1x16

QDR-IV
18+18

18+18

Intel C827
Retimer A

Intel C827
Retimer B

QSFP28A QSFP28B

Flash

Flash

PCIe Gen3 x8

PCIe Gen3 x8

Intel
MAX 10

XLA
XLB
BP

Intel

Intel
Arria 10 FPGA

PEX87 47
PCIe Switch

PCIe x16 Edge Connector

1150GT

XL710 #1
2 x 40G NIC
4 x 10G NIC

PCIe x8

XLA
XLB
BP

Intel
XL710 #2

2 x 40G NIC
4 x 10G NIC

PCIe x8
32+32

0-7 2 x PCIe x 8 8-15

XLA
XLB

XL2A

SPI
QSBQSA

4 x 10G/
1 x 40G
1 x 40G

4 x 10G / 4 x 25G / 2 x 25G

EEPROM EEPROM

4 x 10G / 2 x 25G

XL2B
16

PingPong

32+32
PingPong

4 x 10G/
1 x 40G
1 x 40G

Flash

SMBus
Flash
NIOS

Intel FPGA Programmable Acceleration Card N3000

4 x 10G / 4 x 25G / 2 x 25G 4 x 10G / 2 x 25G

As can be seen in Figure 1 on page 8, the Intel Arria 10 FPGA is central to data and
control flow. Within the Intel Arria 10 FPGA, there are both data and control IP cores
that are required for the board to work properly. You must include these required IP
cores in your designs. Figure 2 on page 9 illustrates the Intel provided required and
optional blocks as well as the ccip_std_afu block where your design is instantiated.

3. High Level Description

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

8

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2. ccip_std_afu Block

DDR A EMIF
(Optional)

DDR IF

DDR B EMIF
(Optional)

DDR C EMIF
(Optional)

NIC
XL 710

#1

NIC
XL 710

#2

QDR EMIF
(Optional)

DDR IF DDR IF QDR IF

ccip_std_afu
(Your design goes here)

fpga_top (BBS core)
(Using PCIe 0)

(Required)

CCI-P

QSPIVC Top

Av-MM
Av-MM

MAX 10

I2C

EEPROM

PCIe-0
Gen3 x 8

PCIe-1
Gen3 x 8

PCIe
Switch

PCIe
Switch

green_bs

EthernetPHY
#A

Av-ST

EthernetPHY
#B

CSR

PHY & MAC
Wrapper

(i.e. 10G or
25G)

(Optional)

CSR
PHY & MAC

Wrapper
(i.e. 10G or

40G)
(Optional)

Av-ST

Ethernet

Ethernet

Av-MMAv-MM Av-MMAv-MM

3.2.1. In-Line Data Path

The N3000 supports multiple data path options. Your application can use one or more
of these data options.

Ethernet data can be processed in-line where traffic traverses: QSFP ➤ Intel Arria
10 FPGA ➤ Intel Ethernet Controller XL710-BM2 NIC ➤ Host and/or QSFP ➤
Intel Arria 10 FPGA ➤ Host. These data paths are shown below:

Figure 3. Data Path

DDR A EMIF
(Optional)

DDR IF

DDR B EMIF
(Optional)

DDR C EMIF
(Optional)

NIC
XL 710

#1

NIC
XL 710

#2

QDR EMIF
(Optional)

DDR IF DDR IF QDR IF

ccip_std_afu
(Your design goes here)

fpga_top (BBS core)
(Using PCIe 0)

(Required)

CCI-P

QSPIVC Top

Av-MM
Av-MM

MAX 10

I2C

MAC
EEPROM

PCIe-0
Gen3 x 8

PCIe-1
Gen3 x 8

PCIe
Switch

PCIe
Switch

green_bs

EthernetPHY
#A Av-ST

EthernetPHY
#B

CSR
PHY & MAC

Wrapper
(i.e. 10G or

25G)
(Optional)

CSR
PHY & MAC

Wrapper
(i.e. 10G or

40G)
(Optional)

Av-ST

Ethernet

Ethernet

Av-MMAv-MM Av-MMAv-MM

3. High Level Description

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Data can also be processed in a look-aside configuration where the data comes into
the Intel Arria 10 FPGA from the host PCIe interface, the FPGA processes the data and
then sends the data back to the host through the PCIe connection. Some examples of
look-aside processing are compression/de-compression and encryption/decryption.

3.2.2. Supported Ethernet Network Configurations

The N3000 has three network configurations:

Network
Configuration

QSFP28 A QSFP28 B Intel XL710 #1 Intel XL710 #2 Supported Board OPN

8 x 10GbE 4 x 10GbE 4 x 10GbE 4 x 10GbE 4 x 10GbE BD-NFV-N3000-1

2 x 2 x 25GbE 2 x 25GbE 2 x 25GbE 2 x 40GbE 2 x 40GbE BD-NFV-N3000-2
BD-NFV-N3000-N

4 x 25GbE 4 x 25GbE Not Used 2 x 40GbE 2 x 40GbE BD-NFV-N3000-2
BD-NFV-N3000-N

• 2 – QSFP ports where each QSFP supports 4 – 10 GbE lanes – this configuration is
referred to as 8 X 10 G

• 2 – QSFP slots where each QSFP supports 2 – 25 GbE lanes – this configuration is
referred to as 2 x 2 x 25 G

• 1 – QSFP port where 4 – 25 GbE lanes are supported. This configuration is
referred to as 4 x 25 G

Note: The above network configurations are the only ones supported.

The fpga_top block contains a Nios II processor and firmware that configures the
network settings for the Intel C827 Ethernet re-timer device. This Nios II firmware is
not user editable.

The Intel Ethernet Controller XL710-BM2 network interface controller (NIC) is
configured during board manufacturing to be either 10G or 40G. You cannot change
the Intel Ethernet Controller XL710-BM2 NIC to switch between 10G and 40G. If your
data path requires the Intel Ethernet Controller XL710-BM2 NIC, then you cannot
switch between 10G and 25G network configurations. You can switch FPGA images
between any of the supported network configurations.

3.2.3. Provided Files

The N3000 Acceleration Stack for Development software release provides the files for
an example design. You can review this file set as a learning step for the creation of
your design.

To access the files, go to your N3000 software installation directory and enter the
following commands:

$ cd <N3000 Installation Directory>/inteldevstack/rtl/n3000_1_3_v1.5.7
$ export N3000_EXAMPLE_ROOT=$PWD

3.2.3.1. Directory Structure

The supplied FPGA files are a combination of clear text and encrypted files.

3. High Level Description

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The directory structure of the supplied source files is shown below:

Directory Structure of the Factory_Image sub directory:

• /hw/afu – this is where the AFU factory image example is located

— /hw - Sub directory with clear text RTL, afu.qsf and afu.sdc

— /sw - Sub directory with example software code

• /hw/pac – this is where Ethernet MAC, external memory interface, and encrypted
FIM is included

• /prj/pac_baseline – Intel Quartus Prime project files

• /prj/pac_baseline/build – programming files and build reports after
compilation completes

• At the top of the directory tree is the Makefile used in compiling the project.

• The hello_afu sub directory contains a simple example AFU illustrating design
points. The Initial_Shell_AFU contains a starting directory structure for your
new AFU design.

3.2.4. Internal Interfaces

The ccip_std_afu module has the following interfaces:

3. High Level Description

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Core Cache Interface (CCI-P) – This is an FPGA – Host PCIe interface required for
OPAE stack operation.

2. Ethernet interface – This interface provides each Ethernet interface as individual
or Multiplexed Avalon® streaming interface bus or buses.

3. Local Memory – Each external memory has an Avalon memory-mapped interface
interface.

4. PCIe – Optional secondary PCIe interface can be included if needed in your AFU for
additional host – FPGA data transfer capability.

3.2.4.1. Core Cache Interface (CCI-P)

The N3000 uses the CCI-P interface for compatibility with the OPAE software stack and
drivers. The N3000 has the FIU capabilities of the Intel PAC with Intel Arria 10 GX
FPGA as shown in the Comparison of FIU Capabilities section of the Intel Acceleration
Stack for Intel Xeon CPU with FPGAs Core Cache Interface (CCI-P) Reference Manual.

Note: You must develop a detailed understanding of the CCI-P Interface as described in the
CCI-P Interface section of the Intel Acceleration Stack for Intel Xeon CPU with FPGAs
Core Cache Interface (CCI-P) Reference Manual.

The N3000 has the following signals in the CCI-P interface:

Signal Width Direction Description

pClk 1 Input 200 MHz system clock. All CCI-P signals are synchronous to this signal.

pClkDiv2 1 Input 200 MHz system clock. This signal is a copy of pClk. Please ignore name

pClkDiv4 1 Input 200 MHz system clock. This signal is a copy of pClk. Please ignore name.

uClk_usr 1 Input User clock – Default = 312.5 MHz clock. To use this clock, set
USE_BBS_CLK=1 in make settings.

uClk_usrDiv2 1 Input User clock – Default = 156.25 MHz clock. To use this clock, set
USE_BBS_CLK=1 in make settings.

G_CLK100 1 Input 100 MHz global reference clock, for optional PCIe IP core or additional PLLs
if needed

t_if_ccip_Rx struc Input CCI-P data input structure defined in ccip_if_pkg.sv

t_if_ccip_Tx struc Output CCI-P data output structure defined in ccip_if_pkg.sv

pck_cp2af_softReset 1 Input Active high reset. Synchronous with pClk asserted for 256 clock cycles.

pck_cp2af_pwrState 2 Input Present, but not used

pck_cp2af_error 1 Input Present, but not used

The CCI-P clocks: pClk, pClkDiv2, pClkDiv4, uClk_usr, and uClk_usrDiv2 do
not allow you to change frequencies. If your AFU requires a different clock frequency,
then instantiate a new PLL and use the G_CLK100 as a PLL reference clock.

Related Information

Intel Acceleration Stack for Intel Xeon CPU with FPGAs Core Cache Interface (CCI-P)
Reference Manual

3. High Level Description

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

12

https://www.intel.com/content/www/us/en/docs/programmable/683193/current/acceleration-stack-for-cpu-with-fpgas.html
https://www.intel.com/content/www/us/en/docs/programmable/683193/current/acceleration-stack-for-cpu-with-fpgas.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.2.4.1.1. FPGA Internal Register Access

Access to internal FPGA registers with the PCIe 0 CCI-P interface uses Memory
Mapped I/O (MMIO) access. You may use the following types of internal registers:

• Direct access

• Indirect access

Direct access registers consist of MMIO addressable registers. The provided example
design hello_afu.sv illustrates direct access registers.

The CCI-P protocol MMIO address space is limited to 256 kB. The indirect access
registers provide a mechanism to address larger areas by including control and
response registers for extended slave addressing. AFU designers may use the provided
ccip_to_avmm module to provide indirect access for your Avalon memory-mapped
interface slave modules. The ccip_to_avmm module block diagram is shown below:

Figure 4. CCI-P to Avalon memory-mapped interface Block

CCI-P
MMIO

Required CCI-P regs:
 -DFH
 -AFUID

To/From
 Slave
 Module

ccip_async_shim ccip_avmm_mmio M bbs_regs_mm_wrap MSAV_mm

pClk AV_Clk

CCI-P
MMIO AV_mm

As can be seen in this block diagram, this module consists of the following:

• ccip_async_shim – CCI-P to and from Avalon clock domain crossing

• ccip_avmm_mmio – converts MMIO to and from Avalon memory-mapped
interface

• bbs_regs_mm_wrap – contains CCI-P required DFH and AFU ID registers and
indirect command and status registers

The indirect command and status registers are defined as follows:

Table 1. Control Register

Field Name Range Access Description

cmd [63:62] RW Command for slave:
0x0 – NOP
0x1 – indirect read request
0x2 – indirect write request

addr [61:32] RW Slave address

Write data [31:0] RW Slave write data

For an indirect write request:

1. Write the following to the Control register:

3. High Level Description

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• cmd = 0x2

• addr

• Write data

2. Poll on the RW valid field of the Status register for RW valid = 1 to verify that
the write is successful.

For an indirect read request,:

1. Write the following to the Control register::

• cmd = 0x1

• addr

2. Poll on the RW valid field of the Status register for RW valid = 1 to verify that
the RD Data field contains valid data.

BBS_regs_mm_wrap Access Behavior

The following figures show the bbs_regs_mm_wrap upstream Avalon memory-
mapped interface slave to downstream Avalon memory-mapped interface slave
waveforms for indirect write and read operations.

Note: Pay attention to the downstream Avalon memory-mapped interface master waveforms
for proper operation with your slave module.

Indirect Write and Read Requests with Non-Blocking Access

The back pressure signal (avmm_s_waitrequest) is not used from the indirect
access module to the CCI-P; and a write (WR) or read (RD) transaction can start at any
time, but must complete in the next clock cycle.

Figure 5 on page 15 and Figure 6 on page 16 demonstrate this behavior:

3. High Level Description

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 5. Avalon memory-mapped interface Waveforms for Indirect Write Request with
NONBLOCKING_ACCESS_EN = 1

3. High Level Description

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6. Avalon memory-mapped interface Waveforms of Indirect Read Request with
NONBLOCKING_ACCESS_EN = 1

Write and Indirect Read Requests with Blocking Access

The back pressure signal (avmm_s_waitrequest) is always set to ‘1’ in the NOP
state; and a write (WR) or read (RD) transaction can start when
avmm_s_waitrequest = 1, but cannot finish until avmm_s_waitrequest != 0.

Figure 7 on page 17 and Figure 8 on page 18 demonstrate this behavior:

3. High Level Description

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7. Write Request with NONBLOCKING_ACCESS_EN = 0

3. High Level Description

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 8. Waveform of Indirect Read Request with NONBLOCKING_ACCESS_EN = 0

Avalon memory-mapped interface Master Response to a Read Request with
Non-Blocking and Blocking Access

You can read data on the bus for the following conditions:

• When AVMM_MASTER_READDATAVALID_EN = 1 and avmm_m_readdatavalid
are valid

• When AVMM_MASTER_READDATAVALID_EN = 0 and (!avmm_m_waitrequest &
avmm_m_read) are valid

Figure 9 on page 18 and Figure 10 on page 19 demonstrate this behavior:

Figure 9. Avalon memory-mapped interface Master Response to a Read Request with
NONBLOCKING_ACCESS_EN = 1

3. High Level Description

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 10. Avalon memory-mapped interface Master Response to a Read Request with
NONBLOCKING_ACCESS_EN = 0

Related Information

• Ethernet MAC Wrapper Register Access on page 30

• Ethernet MAC Wrapper Register Access on page 30

• CCI-P Async Shim Basic Building Block

• CCI-P Basic Building Block Wiki

3.2.4.2. Ethernet Interface

The N3000 has Ethernet MAC IP cores to provide Ethernet receive packet delineation
and transmit packet origination. The Ethernet MACs are instantiated in both the
network interface and the N3000 Intel Ethernet Controller XL710-BM2 NIC interface,
as shown below:

3. High Level Description

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

19

https://github.com/OPAE/intel-fpga-bbb/wiki/BBB_ccip_async
https://github.com/OPAE/intel-fpga-bbb/wiki
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11. Instantiated Ethernet MACs

AFU

A10

4x 10G
NIC

4x

4x XL710
NIC

4x10G
XL710

NIC
4x10G4x 10G

8x10 Mode

2x2x25 Mode

4x25 Mode

nfv_eth_wrapper
(8x10)

C827
Retimer

QSFP

Network
C827

Retimer
QSFP

nfv_eth_wrapper
(8x10)

4x

4x

AFU

A10

1x 40G

1x 40G

1x 40G

1x 40G
NIC

XL710
2x40G

XL710
2x40G

nfv_eth_wrapper
(4x25)

Network
C827

Retimer
QSFP nfv_eth_wrapper

(4x40)
4x

AFU

A10

1x 40G

1x 40G

1x 40G

1x 40G
NIC

XL710
2x40G

XL710
2x40G

nfv_eth_wrapper
(4x25)

C827
Retimer

QSFP

Network
C827

Retimer
QSFP

nfv_eth_wrapper
(4x40)

2x

2x

The nfv_eth_wrapper module is configurable by Verilog parameters for the type of
Ethernet interface (10, 25 or 40 G), number of interfaces and aggregated or
disaggregated style of the AFU interface. The setting of these Verilog parameters is
performed by the Makefile option settings described in the Build with make section.
The nfv_eth_wrapper module includes the following:

• Ethernet MAC

• PLL

• Multiplex/De-Multiplex blocks

The AFU Ethernet interface has three options with the following properties:

Aggregated:

1. One Avalon streaming interface bus aggregating all traffic from each Ethernet
interface

2. Common clock

3. Each Ethernet channel is identified by Avalon streaming interface channel identifier

4. Full Ethernet MAC statistics provided

The aggregated option allows your AFU to have a common packet processing pipeline.
The aggregated option uses more FPGA resources and introduces delay from a packet
buffer.

3. High Level Description

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

20

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12. 8x10G Multiplexor

MAC RX Packet MUX

Packet in process
will still go out
from Pkt FIFO

Note: Ready is normally 1,
setting to 0 stops traffic
flow on all channels

Avalon streaming interface
with 8 packet interleaved
channels (Sop, eop, valid,
data[511:0], empty[5:0],
channel [2:0]

Ready latency 1
ready

fpga_internal_pause_req[7]

fpga_internal_pause_req[6]

fpga_internal_pause_req[5]

fpga_internal_pause_req[4]

fpga_internal_pause_req[2]

fpga_internal_pause_req[1]

fpga_internal_pause_req[0]

fpga_internal_pause_req[3]

Pkt FIFO

Flow Ctrl

MAC RX
MAC TX

Bus
Resizer

Pkt FIFO

Flow Ctrl

MAC RX
MAC TX

Bus
Resizer

Pkt FIFO

Flow Ctrl

MAC RX
MAC TX

Bus
Resizer

Pkt FIFO

Flow Ctrl

MAC RX
MAC TX

Bus
Resizer

Pkt FIFO

Flow Ctrl

MAC RX
MAC TX

Bus
Resizer

Pkt FIFO

Flow Ctrl

MAC RX
MAC TX

Bus
Resizer

Pkt FIFO

Flow Ctrl

MAC RX
MAC TX

Bus
Resizer

Pkt FIFO

Flow Ctrl

MAC RX
MAC TX

Bus
Resizer

Scheduler reg

512@300/266.52mac rx clk Controlled by
channel number

512
bit
reg

Ready controlled
by scheduler

CDC,
resizer,
drop counter

Flow control
(pause frame request)
based on Pkt
FIFO fill level

512
bit
reg

512
bit
reg

Figure 13. 8x10 De-Multiplexor

MAC
TX

mac tx clk

Clock crossing

MAC TX DEMUX

Wait for eop before sending
packet to MAC

Depends on FIFO
fill level

Ready latency 1

512@300 MHz -
Avalon streaming
interface with 8
interleaved channels
(Sop, eop, valid,
data [511:0],
empty [5:0],
channel [2:0]

Pkt FIFO
Flow Ctrl

Bus
Resizer

MAC
TX

Pkt FIFO
Flow Ctrl

Bus
Resizer

MAC
TX

Pkt FIFO
Flow Ctrl

Bus
Resizer

MAC
TX

Pkt FIFO
Flow Ctrl

Bus
Resizer

MAC
TX

Pkt FIFO
Flow Ctrl

Bus
Resizer

MAC
TX

Pkt FIFO
Flow Ctrl

Bus
Resizer

MAC
TX

Pkt FIFO
Flow Ctrl

Bus
Resizer

MAC
TX

Pkt FIFO
Flow Ctrl

Bus
Resizer

ready

512@300/266.52

fpga_internal_pause_req[7]

fpga_internal_pause_req[6]

fpga_internal_pause_req[5]

fpga_internal_pause_req[4]

fpga_internal_pause_req[2]

fpga_internal_pause_req[1]

fpga_internal_pause_req[0]

fpga_internal_pause_req[3]
Optional

(parametrized) registers

3. High Level Description

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Disaggregated:

1. Each Ethernet MAC has an Avalon streaming interface bus provided as an array of
Avalon streaming interface. Each channel is identified by array index.

2. Received packets with errors (CRC, length errors) are dropped from MAC.

3. Egress FIFO saturation based flow control is provided to AFU.

4. One common clock is used by AFU logic.

The disaggregated configuration reduces FPGA resources removing the multiplex/de-
multiplex blocks.

Figure 14. MAC RX Packet MUX

fpga_internal_pause_req[0]

fpga_internal_pause_req[1]

fpga_internal_pause_req[2]

fpga_internal_pause_req[3]

1 configurable ref.clk

MAC RX Packet MUX

Flow control
(pause frame request)
based on Pkt
FIFO fill level

CDC, resizer,
drop counter

Bus width to
the AFU is
configurable

Controlled by
array index

Ready latency 0

Ready is used alongside
with flow control interface

Data bus width
is configurable

Packet in process
will still go out
from Pkt FIFO

MAC RX Bus
Resizer Pkt FIFO

Flow CtrlMAC TX

MAC RX Bus
Resizer Pkt FIFO

Flow CtrlMAC TX

MAC RX Bus
Resizer Pkt FIFO

Flow CtrlMAC TX

MAC RX Bus
Resizer Pkt FIFO

Flow CtrlMAC TX

mac rx clk

Figure 15. MAC TX DEMUX

fpga_internal_pause_req[0]

fpga_internal_pause_req[1]

fpga_internal_pause_req[2]

fpga_internal_pause_req[3]

1 configurable ref.clk

MAC TX DEMUX

Ready
latency 0

Wait for eop before sending
packet to MAC

CDC

Depends on FIFO
fill level

Controlled by
array index

Ready latency 0

Data bus width
is configurable

MAC
TX

MAC
TX

MAC
TX

MAC
TX

Bus
Resizer Pkt FIFO

Flow Ctrl

Bus
Resizer Pkt FIFO

Flow Ctrl

Bus
Resizer Pkt FIFO

Flow Ctrl

Bus
Resizer Pkt FIFO

Flow Ctrl

mac tx clk

3. High Level Description

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Lightweight Mode

1. Disaggregated Avalon streaming interface interfaces from each MAC.

2. MUX function passes received traffic directly to the AFU.

3. The AFU must control the data stream by removing frames with errors and
controlling the flow.

4. Each MAC interface has a separate clock.

5. No Ethernet statistics provided in Ethernet MACs.

Note: The Lightweight mode is not supported for 10G applications.

Figure 16. MAC RX Packet MUX

Pkts data [0]

MAC flow ctrl IF [0]

Pkts data [1]

MAC flow ctrl IF [1]

Pkts data [2]
MAC flow ctrl IF [2]

MAC RX

MAC TX

Pkts data [3]

MAC flow ctrl IF [3]

mac tx clk

MAC RX Packet MUX
Controlled by
array index

MAC Avalon
streaming interface
Data bus depends
on mac inst.

NO ready

Each data IF has
its own ref.clk

Flow cntr IF depends
on MAC config.

MAC RX

MAC TX

MAC RX

MAC TX

MAC RX

MAC TX

3. High Level Description

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17. MAC TX DEMUX

MAC
TX

Pause frames

Pkts data [0]
Ready [0]

MAC
TX

Pause frames

Pkts data [1]
Ready [1]

MAC
TX

Pause frames

Pkts data [2]
Ready [2]

MAC
TX

Pause frames

Pkts data [3]
Ready [3]

mac tx clk

MAC TX DEMUX
Ready latency 0

Controlled by array index

MAC Avalon streaming
interface Data bus
depends on mac inst.

Each data IF has its own
ref.clk

Flow control is done by
ready signal

Related Information

Build with make on page 37

3.2.4.3. Ethernet MAC

The 25 GbE MAC IP core is documented in the 25G Ethernet Intel Arria 10 FPGA IP
User Guide. The N3000 configures the 25 GbE MACwith the following parameters set:

Table 2. 25G MAC IP Setting

Parameter IP Core parameter setting

Ready Latency 0

Enable RS-FEC Off

Enable flow control On

Enable link fault generation On

Enable preamble pass through Off

Enable TX CRC pass through Off

Enable MAC statistics counters On
Off for Light weight mode

Enable IEEE 1588 Off

The Intel C827 Re-timer performs FEC functionality, therefore the A10 Ethernet MAC
does not have RS-FEC enabled.

3. High Level Description

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

24

https://www.intel.com/content/www/us/en/programmable/documentation/ewo1447742896786.html
https://www.intel.com/content/www/us/en/programmable/documentation/ewo1447742896786.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The 10 GbE MAC IP core is documented in: Low Latency Ethernet 10G MAC Intel Arria
10 FPGA IP Design Example User Guide

The 40 GbE MAC IP core is documented in: Low Latency 40-Gbps Ethernet IP Core
User Guide

The 40 and 10 GbE MAC IP core are set with the following parameters:

Table 3. 40G MAC IP Setting

Parameter IP core parameter setting

Enable SyncE Off

PHY reference 644.53125MHz

Use external TX MAC PLL On

Flow control mode Standard flow control

Average inter-packet gap 12

Enable 1588 PTP Off

Enable link fault generation On

Enable TX CRC insertion On

Enable preamble pass through Off

Enable alignment EOP on FCS word On

Enable TX statistics On

Enable RX statistics On

Enable strict SFD checking Off

3.2.4.4. 40G – 25G Gearbox

For 25 GbE operation, the Intel Arria 10 FPGA provides a gearbox that rate adjusts
between the 25 GbE network interface and the Intel Ethernet Controller XL710-BM2
NIC 40 GbE interface.

Received 25 GbE traffic is written into a per port 32 kB Intel Arria 10 FPGA FIFO. The
FIFO data is read out on packet boundaries using a 40 GbE rate where an entire
packet is transferred to the Intel Ethernet Controller XL710-BM2 NIC. The Intel Arria
10 FPGA extends the interframe packet gap to the Intel Ethernet Controller XL710-
BM2 NIC such that the data rate is 40 Gb, however the number of packets transferred
is determined by the number of packets received from the 25 GbE network port.

The Intel Ethernet Controller XL710-BM2 NIC sends Ethernet traffic to the Intel Arria
10 FPGA over a 40 GbE path. The Intel Arria 10 FPGA buffers the 40 GbE traffic in a
32 kB packet-based FIFO. If the Intel Arria 10 FPGA FIFO exceeds half fill level, then
the Intel Arria 10 FPGA asserts a backpressure external pin, signaling the Intel
Ethernet Controller XL710-BM2 NIC to extend the interframe packet gap. Once the
Intel Arria 10 FPGA FIFO capacity drops to a quarter of capacity, then the
backpressure external pin is de-asserted. This extended interframe packet gap
reduces the packet rate such that the resulting data rate is 25 Gb. The backpressure
signals are connected to the ccip_std_afu module. The Intel Ethernet Controller
XL710-BM2 NIC to Intel Arria 10 FPGA data flow is shown in this figure:

3. High Level Description

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

25

https://www.intel.com/content/www/us/en/programmable/documentation/nfa1438753448747.html
https://www.intel.com/content/www/us/en/programmable/documentation/nfa1438753448747.html
https://www.intel.com/content/www/us/en/programmable/documentation/ayd1482964193368.html#ajk1476208255005
https://www.intel.com/content/www/us/en/programmable/documentation/ayd1482964193368.html#ajk1476208255005
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18.

MAC TX DEMUX

3.2.4.5. External Memory Interfaces

The N3000 has the following external memory interfaces as shown in the board block
diagram below:

3. High Level Description

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 19. External Memory Interfaces

DDR4
4x16

DDR4
4x16

DDR4
1x16

QDR-IV
18+18

18+18

Intel C827
Retimer A

Intel C827
Retimer B

QSFP28A QSFP28B

Flash

Flash

PCIe Gen3 x8

PCIe Gen3 x8

Intel
MAX 10

XLA
XLB
BP

Intel

Intel
Arria 10 FPGA

PEX87 47
PCIe Switch

PCIe x16 Edge Connector

1150GT

XL710 #1
2 x 40G NIC
4 x 10G NIC

PCIe x8

XLA
XLB
BP

Intel
XL710 #2

2 x 40G NIC
4 x 10G NIC

PCIe x8
32+32

0-7 2 x PCIe x 8 8-15

XLA
XLB

XL2A

SPI
QSBQSA

4 x 10G/
1 x 40G
1 x 40G

4 x 10G / 4 x 25G / 2 x 25G

EEPROM EEPROM

4 x 10G / 2 x 25G

XL2B
16

PingPong

32+32
PingPong

4 x 10G/
1 x 40G
1 x 40G

Flash

SMBus
Flash
NIOS

Intel FPGA Programmable Acceleration Card N3000

4 x 10G / 4 x 25G / 2 x 25G 4 x 10G / 2 x 25G

• DDR4 – 2133 Mb/s – total 9 GB

— DDR4A and DDR4B - each 4 GB banks

• 64-bit wide

• Ping-Pong physical interface

— DDR4C - 1 GB bank

• 16-bit wide

• QDR4 – 1066 MHz – 144 Mb

— 8M x 18

Related Information

External Memory Interfaces Intel Arria 10 FPGA IP User Guide

3.2.4.5.1. DDR4A and DDR4B

Both DDR4A and DDR4B use the Ping Pong PHY described in the Intel Arria 10 EMIF
Ping Pong PHY Description section of the External Memory Interfaces Intel Arria 10
FPGA IP User Guide.

3. High Level Description

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

27

https://www.intel.com/content/www/us/en/programmable/documentation/eqw1503946000045.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Ping Pong PHY is physically implemented in the board design. The Ping Pong PHY
design has two independent memory controllers per DDR4 interface where your
interface consists of two Avalon memory-mapped interface interfaces. See DDR4A
user interface below (please note, DDR4B is identical).

ccip_std_afu
Direction

Width Signal Name Description

DDR4A_0 Interface

input ddr4a_avmm_0_clk 266 MHz clock sourced from EMIF

input ddr4a_avmm_0_reset_n Active low reset to user logic. Reset for the user
clock domain. Asynchronous assertion and
synchronous de-assertion

input ddr4a_avmm_0_waitrequest Wait-request is asserted when controller Avalon
memory-mapped interface interface is busy

input [255:0] ddr4a_avmm_0_readdata Read data from external memory

input ddr4a_avmm_0_readdatavalid Indicates readdata is valid when high

output [6:0] ddr4a_avmm_0_burstcount Number of transfers in each read/write burst

output [255:0] ddr4a_avmm_0_writedata AFU supplied data to written to external memory

output [25:0] ddr4a_avmm_0_address Word address forAvalon memory-mapped interface
interface of memory controller

output ddr4a_avmm_0_write Write request from AFU

output ddr4a_avmm_0_read Read request from AFU

output [31:0] ddr4a_avmm_0_byteenable Write byte enable from AFU

DDR4A_1 Interface

input ddr4a_avmm_1_clk Copy of ddr4a_avmm_0_clk

input ddr4a_avmm_1_reset_n Secondary active low reset to user logic. Reset for
the user clock domain. Asynchronous assertion and
synchronous de-assertion

input ddr4a_avmm_1_waitrequest Wait-request is asserted when controller Avalon
memory-mapped interface interface is busy

input [255:0] ddr4a_avmm_1_readdata Read data from external memory

input ddr4a_avmm_1_readdatavalid Indicates readdata is valid when high

output [6:0] ddr4a_avmm_1_burstcount Number of transfers in each read/write burst

output [255:0] ddr4a_avmm_1_writedata AFU supplied data to written to external memory

output [25:0] ddr4a_avmm_1_address Word address for Avalon memory-mapped interface
interface of memory controller

output ddr4a_avmm_1_write Write request from AFU

output ddr4a_avmm_1_read Read request from AFU

output [31:0] ddr4a_avmm_1_byteenable Write byte enable from AFU

You can combine both of the Ping Pong Avalon memory-mapped interface interfaces
from one DDR4 bank to form a 512-bit interface with an Avalon combiner. The factory
image example demonstrates the use of the Avalon combiner.

3. High Level Description

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The DDR4A and DDR4B interfaces are suited to large record storage, off chip deep
packet queues and other storage needs.

3.2.4.5.2. DDR4C

The ccip_std_afu interfaces to DDR4C by an Avalon memory-mapped interface
interface as defined below:

ccip_std_afu
Direction

Width Signal Name Description

input ddr4c_avmm_0_clk 266 MHz clock sourced from EMIF

input ddr4c_avmm_0_reset_n Active low reset to user logic. Reset for the user
clock domain. Asynchronous assertion and
synchronous de-assertion

input ddr4c_avmm_0_waitrequest Wait-request is asserted when controller Avalon
memory-mapped interface interface is busy

input [127:0] ddr4c_avmm_0_readdata Read data from external memory

input ddr4c_avmm_0_readdatavalid Indicates readdata is valid when high

output [6:0] ddr4c_avmm_0_burstcount Number of transfers in each read/write burst

output [127:0] ddr4c_avmm_0_writedata AFU supplied data to written to external memory

output [25:0] ddr4c_avmm_0_address Word address for Avalon memory-mapped interface
interface of memory controller

output ddr4c_avmm_0_write Write request from AFU

output ddr4c_avmm_0_read Read request from AFU

output [15:0] ddr4c_avmm_0_byteenable Write byte enable from AFU

3.2.4.5.3. QDR4 Interface

The external QDR4 SRAM is well suited for fast table look ups and external statistics
counter storage due to the fast random access capabilities of QDR4 SRAM. QDR4
SRAM transfers 4 data words per clock cycle. QDR4 SRAM also has two independent
bidirectional double data rate ports that support concurrent read/write transactions on
both ports.

The multiple access ports of the QDR4 SRAM results in the internal interface providing
8 – Avalon memory-mapped interface interfaces for this external memory device. The
interface is shown below:

ccip_std_afu
Direction

Width Signal Name Description

input qdr_avmm_clk 266 MHz clock sourced from EMIF

input qdr_avmm_reset_n Active low reset to user logic. Reset for the user
clock domain. Asynchronous assertion and
synchronous de-assertion

input qdr_avmm_waitrequest [7:0] Wait-request is asserted when controller Avalon
memory-mapped interface interface is busy

input [35:0] qdr_avmm_readdata [7:0] Read data from external memory

input qdr_avmm_readdatavalid [7:0] Indicates readdata is valid when high

continued...

3. High Level Description

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ccip_std_afu
Direction

Width Signal Name Description

output [2:0] qdr_avmm_burstcount [7:0] Number of transfers in each read/write burst

output [35:0] qdr_avmm_writedata [7:0] AFU supplied data to written to external memory

output [21:0] qdr_avmm_address [7:0] Word address for Avalon memory-mapped
interface interface of memory controller

output qdr_avmm_write [7:0] Write request from AFU

output qdr_avmm_read [7:0] Read request from AFU

3.2.4.6. Ethernet MAC Wrapper Register Access

Host processor access to Ethernet MAC Wrapper is by the CCI-P interface using MMIO
indirect access as described in the FPGA Internal Register Access section. The RTL
modules for register access are included in the encrypted portion of N3000 design and
these modules must be included in your design.

There are two Ethernet MAC Wrappers where one wrapper is connected to the network
and the other is connected to the Intel Ethernet Controller XL710-BM2 NIC, as shown
below:

Figure 20. Ethernet Wrapper Register Access

 pac_top

 phy_indir_wrap[0]

 fpga_top

nfv_eth_wrapper_inst

[0]

 phy0_avmm

 ph
y_avm

m
[0]

 phy1_avmm phy_indir_wrap[1]

nfv_eth_wrapper_inst

[1]

 ph
y_avm

m
[1]

EthernetTo
QSFPs

Ethernet To
XL710

 green_bs

 ccip_std_afu

 pcie0
 cci-p

The Ethernet MAC Wrapper registers consist of the following:

• CCI-P required Device Feature Header (DFH) and Information registers are located
inside fpga_top.

• Indirect access control register and status registers are located in
phy_indir_wrap.

• Ethernet MAC, PHY and multiplex/de-multiplex control and status registers are
located in nfv_eth_wrapper.

For an example of how software accesses the Ethernet MAC wrapper, see the python
source file included with the OPAE software release installation:

inteldevstack/src/opae-*.*/usr/tools/extra/fpgadiag/fpgastats.py

3. High Level Description

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following description of registers below is provided for informational purposes. Do
not change or modify this area code, but understanding how this works helps you
create your AFU. When the lightweight mode is used, the Ethernet MAC registers are
not included.

These registers are organized as follows:

Table 4. Ethernet MAC Registers

Register Address Offset

ETH_GROUP_0_DFH 0x7000

ETH_GROUP_0_INFO 0x7008

ETH_GROUP_0_CTRL 0x7010

ETH_GROUP_0_STAT 0x7018

ETH_GROUP_1_DFH 0x8000

ETH_GROUP_1_INFO 0x8008

ETH_GROUP_1_CTRL 0x8010

ETH_GROUP_1_STAT 0x8018

The Information register consists of the following fields:

Table 5. Information Register Fields

FIELD NAME RANGE ACCESS DEFAULT DESCRIPTION

Reserved [63:26] RsvdZ 0x0 Reserved

MAC light weight mode [25] RO 0x0 0 - MACs are in normal mode
1 - MACs are in light weight mode

Direction 24 RO 0x0 0 – XL710 side
1 - Network side

Speed_Gbs [23:16] RO 0xA Allowed: 10, 25, 40 Gbs.

NofPHYs [15:8] RO 0x8 Number of PHYs in group

GroupID [7:0] RO 0x0 Unique identifier of phy group. ETH_GROUP_0 = 0,
ETH_GROUP_1 = 1

The indirect control field has one version for 10G mode and a second version for 25G
and 40G mode. The 10G mode is shown below:

Table 6. 10G Indirect Control Field

FIELD NAME RANGE ACCESS DEFAULT DESCRIPTION

command [63:62] RW 0x0 Command:
0x0 - NOP
0x1 - RD request
0x2 - WR request

reserved [61:54] RO 0x0

device select [53:49] RW 0x0 0x0 - Ethernet Wrapper regs select
0x2, 0x4, 0x6, 0x8, 0xA, 0xC, 0xE, 0x10 - PHY select
0x3, 0x5, 0x7, 0x9, 0xB, 0xD, 0xF, 0x11 - MAC select

continued...

3. High Level Description

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

PHY select device select = 0x2, 0x4, 0x6, 0x8, 0xA, 0xC, 0xE, 0x10

add features
select

[48] RW 0x0 0x0 - phy select
0x1 - reset controller / link status select

PHY Address/reset
ctrl/link status

[47:32] RW 0x0 add features select = 0x0:
PHY reconfiguration interface www.altera.com/literature/hb/arria-10/
ug_arria10_xcvr_phy.pdf
add features select = 0x1: ref. to add features tab.

MAC register
address

[48:32] RW 0x0 When device select = 0x3, 0x5, 0x7, 0x9, 0xB, 0xD, 0xF, 0x11
This field is for Ethernet MAC IP registers as defined in:
www.altera.com/en_US/pdfs/literature/ug/
ug_32b_10g_ethernet_mac.pdf.

ethernet wrapper
regs address

[48:32] When device select = 0x0
This field includes Ethernet Mux/De-Mux registers

write data [31:0] RW 0x0 Write data for phy registers

For 25G and 40G mode:

Table 7. 25G and 40G Indirect Control Field

FIELD NAME RANGE ACCESS DEFAULT DESCRIPTION

command [63:62] RW 0x0 Command:
0x0 - NOP
0x1 - RD request
0x2 - WR request

reserved [61:54] RO 0x0

device select [53:49] RW 0x0 0x0 - ethernet wrapper regs select
0x2, 0x4, 0x6, 0x8 - PHY select
0x3, 0x5, 0x7, 0x9 - MAC select

PHY select device select = 0x2, 0x4, 0x6, 0x8

add features select [48] RW 0x0 0x0 - phy select
0x1 - reset controller / link status select

PHY Address/reset ctrl/link status [47:32] RW 0x0 add features select = 0x0:
add features select = 0x1: ref. to add features tab.

MAC select device select = 0x3, 0x5, 0x7, 0x9

[48:32]

Ethernet Wrapper regs address [48:32] When device select = 0x0
This field includes Ethernet Mux/De-Mux registers

Related Information

• FPGA Internal Register Access on page 13

• FPGA Internal Register Access on page 13

3.3. Factory Image Description

The N3000 provides an example design that demonstrates usage of the key interfaces
available to the ccip_std_afu module.

3. High Level Description

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The block diagram of each network configuration is shown below:

Figure 21. Factory Image Block Diagram for 8x10 GbE

CSR

A10 FPGAEEPROM

QSFP

QSFP

Ext.
lbk

UPL
CSR

AvST

PCIe
x8

PCIe
x16

Host SW

PCIe x8

AvST

Ext.
lbk

EEPROM

PKVL

PCIe x8

SMBus

MDIO

CSR

I2C
IRQ

AvMM
AvMM

BBS
ETH Group
ETH Group

Ext Mem Status
NIOS PKVI/SPI Ctrl

MAC ROM
FME Private Features

QDRIV
Mem

DDR4
Mem

DDR4
Mem

DDR4
Mem

MAC
ROM

QDRIV
Ctrlr

DDR4
Ctrlr

DDR4
Ctrlr

DDR4
Ctrlr

I2C
Ctrlr

NIOS
Flash

A 10 img
Flash

MAX 10

SPI/QSPI
Ctrlr

PCIe
Gen3

8x

PCIe
Gen3

8x

PCIe
Switch

PCIe
x 16
edge

connector

FVL
4x10

PCIe
x8

FVL
4x10

Eth WrapperEth Wrapper 8x10 Mode Only

NIOS
PKVL

PKVL

10G PHY 10G MAC
10G PHY 10G MAC
10G PHY 10G MAC
10G PHY 10G MAC

10G PHY 10G MAC
10G PHY 10G MAC
10G PHY 10G MAC
10G PHY 10G MAC

10G MAC 10G PHY
10G MAC 10G PHY
10G MAC 10G PHY
10G MAC 10G PHY

10G MAC 10G PHY
10G MAC 10G PHY
10G MAC 10G PHY
10G MAC 10G PHY

PCIe lbk (NLB)
UPL

Mem Test (DMA)
Mem Test (DMA)

Mem Test (DMA)
Mem Test (DMA)

AFU Private Features

CCI -
P MUX

Figure 22. Factory Image Block Diagram for 2x2x25GbE

25G PHY 25G MAC

25G PHY 25G MAC

25G PHY 25G MAC

25G PHY 25G MAC

CSR

A10 FPGAEEPROM

QSFP

QSFP

Ext.
lbk

UPL
CSR

AvST

PCIe
x8

PCIe
x16

Host SW

PCIe x8

AvST

Ext.
lbk

EEPROM

PKVL

PKVL

40G PHY 40G MAC

PCIe x8

SMBus

40G PHY 40G MAC

MDIO

CSR

I2C

IRQ

AvMM
AvMM

UPL
2 xPCIe lbk (NLB)

Mem Test (DMA)
Mem Test (DMA)

Mem Test (DMA)
Mem Test (DMA)

AFU Private Features

BBS
ETH Group
ETH Group

Ext Mem Status
NIOS PKVI/SPI Ctrl

MAC ROM
FME Private Features

QDRIV
Mem

DDR4
Mem

DDR4
Mem

DDR4
Mem

MAC
ROM

QDRIV
Ctrlr

DDR4
Ctrlr

DDR4
Ctrlr

DDR4
Ctrlr

I2C
Ctrlr

NIOS
Flash

A 10 img
Flash

MAX 10

SPI/QSPI
Ctrlr

PCIe
Gen3

8x

PCIe
Gen3

8x

PCIe
Switch

PCIe
x 16
edge

connector

FVL
2x40

PCIe
x840G PHY 40G MAC

40G PHY 40G MAC
FVL

2x40

Eth WrapperEth Wrapper

NIOS
PKVL

CCI -
P MUX

3. High Level Description

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 23. Factory Image Block Diagram for 4x25 GbE

CSR

A10 FPGAEEPROM

QSFP

QSFP

Ext.
lbk

UPL
CSR

AvST

PCIe
x8

PCIe
x16

Host SW

PCIe x8

AvST

Ext.
lbk

EEPROM

PKVL

PCIe x8

SMBus

MDIO

CSR

I2C
IRQ

AvMM
AvMM

BBS
ETH Group
ETH Group

Ext Mem Status
NIOS PKVI/SPI Ctrl

MAC ROM
FME Private Features

QDRIV
Mem

DDR4
Mem

DDR4
Mem

DDR4
Mem

MAC
ROM

QDRIV
Ctrlr

DDR4
Ctrlr

DDR4
Ctrlr

DDR4
Ctrlr

I2C
Ctrlr

NIOS
Flash

A 10 img
Flash

MAX 10

SPI/QSPI
Ctrlr

PCIe
Gen3

8x

PCIe
Gen3

8x

PCIe
Switch

PCIe
x 16
edge

connector

FVL
4x10

PCIe
x8

FVL
4x10

Eth WrapperEth Wrapper

NIOS
PKVL

PKVL

25G PHY 25G MAC
25G PHY 25G MAC
25G PHY 25G MAC
25G PHY 25G MAC

PCIe lbk (NLB)
UPL

Mem Test (DMA)
Mem Test (DMA)

Mem Test (DMA)
Mem Test (DMA)

AFU Private Features

40G MAC 40G PHY

40G MAC 40G PHY

40G MAC 40G PHY

40G MAC 40G PHY

The Factory Images include the following high level functions:

• Memory-to-memory DMA blocks illustrating host to and from external memory
transfers. For more information about this component, refer to the DMA
Accelerator Functional Unit (AFU) User Guide: Intel Programmable Acceleration
Card with Intel Arria 10 GX FPGA.

• Native Loopback to test memory reads and writes, bandwidth, and latency. For
more information, refer to the Native Loopback Accelerator Functional Unit (AFU)
User Guide.

• Aggregated Ethernet interface

• Required board management functions

Related Information

• DMA Accelerator Functional Unit (AFU) User Guide: Intel Programmable
Acceleration Card with Intel Arria 10 GX FPGA

• Native Loopback Accelerator Functional Unit (AFU) User Guide

3. High Level Description

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

34

https://www.intel.com/content/www/us/en/programmable/documentation/tmv1511227122034.html
https://www.intel.com/content/www/us/en/programmable/documentation/tmv1511227122034.html
https://www.intel.com/content/www/us/en/programmable/documentation/rbt1498764220522.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Creating an N3000 FPGA Design
In this section, steps are provided to create your AFU. The following AFU design
directories are included:

• hello_afu – this is a simple AFU design illustrating basic design concepts

• Factory_Image – this is a complex AFU design illustrating usage of Ethernet and
external memories

• Initial_Shell_AFU – this design directory serves as the starting point for your
AFU. The required project files are included.

In this section, you are referred to these design directories as a way to highlight
points in the AFU creation, compilation and running of an application on the N3000.
Use these points to create more complex AFU designs for your specific application.

4.1. Create New Project Directory

The Initial_Shell_AFU provides the starting structure for your AFU design.

Create a new project directory and copy the Initial_Shell_AFU files to the new
project directory.

$ mkdir <Your new project directory name>
$ cd <Your new project directory name>
$ cp -R $N3000_EXAMPLE_ROOT/Initial_Shell_AFU/* .

Your design directory is now ready for your new design work.

4.2. Create Your AFU Design Files

As a minimum, create the following files for your AFU design:

1. ccip_std_afu.sv – this file is where your AFU connects to CCI-P fabric, external
memory and Ethernet

2. An AFU file. You can see AFU examples in hello_afu/hw/afu/hw/rtl/
hello_afu.sv and Factory_Image/hw/afu/rtl/afu

3. afu.qsf - this Intel Quartus Prime file adds your RTL and design files

4. afu.sdc – this Intel Quartus Prime file specifies your AFU timing constraints

683190 | 2022.07.15

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

4.2.1. ccip_std_afu.sv

The Initial_Shell_AFU includes ccip_std_afu.sv starting file where you can
instantiate your AFU. Review of this file shows import ccip_if_pkg::* to include
definitions of CCI-P interface structures.

import ccip_if_pkg::*; //required for CCI-P definitions
module ccip_std_afu #(…..
;
;

There is a CCI-P interface register to improve timing as shown below:

 // ===
 // Register SR <--> PR signals at interface before consuming it
 // ===

 (* noprune *) logic [1:0] pck_cp2af_pwrState_T1;
 (* noprune *) logic pck_cp2af_error_T1;

 logic pck_cp2af_softReset_T1;
 t_if_ccip_Rx pck_cp2af_sRx_T1;
 t_if_ccip_Tx pck_af2cp_sTx_T0;

 // ===
 // Register PR <--> PR signals near interface before consuming it
 // ===

 ccip_interface_reg inst_green_ccip_interface_reg (
 .pClk (pClk),
 .pck_cp2af_softReset_T0 (pck_cp2af_softReset),
 .pck_cp2af_pwrState_T0 (pck_cp2af_pwrState),
 .pck_cp2af_error_T0 (pck_cp2af_error),
 .pck_cp2af_sRx_T0 (pck_cp2af_sRx),
 .pck_af2cp_sTx_T0 (pck_af2cp_sTx_T0),

 .pck_cp2af_softReset_T1 (pck_cp2af_softReset_T1),
 .pck_cp2af_pwrState_T1 (pck_cp2af_pwrState_T1),
 .pck_cp2af_error_T1 (pck_cp2af_error_T1),
 .pck_cp2af_sRx_T1 (pck_cp2af_sRx_T1),
 .pck_af2cp_sTx_T1 (pck_af2cp_sTx)
);

Your AFU design connects to this registered CCI-P interface.

4.2.2. AFU File

Your AFU requires a CCI-P package and a UUID for proper connectivity with host
software. See example below:

import ccip_if_pkg::*;
module hello_afu
 (
 input clk, // Core clock. CCI interface is synchronous to this clock.
 input reset, // CCI interface ACTIVE HIGH reset.
 // CCI-P signals
 input t_if_ccip_Rx cp2af_sRxPort,
 output t_if_ccip_Tx af2cp_sTxPort
);
 `define AFU_ACCEL_UUID 128'h850adcc2_6ceb_4b22_9722_d43375b61c66
 // The AFU must respond with its AFU ID in response to MMIO reads of
 // the CCI-P device feature header (DFH). The AFU ID is a unique ID
 // for a given program. Here we generated one with the "uuidgen"
 // program and stored it in the AFU's JSON file. ASE and synthesis

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 // setup scripts automatically invoke the OPAE afu_json_mgr script
 // to extract the UUID into afu_json_info.vh.
 logic [127:0] afu_id = `AFU_ACCEL_UUID;

Note: For a more complicated example where multiple sub-AFUs are instantiated, refer to
Factory_Image/hw/afu/rtl/afu_dma.sv.

The software framework and the application software use the AFU_ID to ensure that
they are matched to the correct AFU; that is, that they are obeying the same
architectural interface.

The AFU_ID is a 128-bit value which is generated using an UUID/GUID generator to
ensure the value is unique.

For more information about UUID/GUID, refer to the "Online GUID Generator" web
page.

Related Information

Online GUID Generator

4.2.3. QSF File

The afu.qsf is where you include your AFU RTL and any other required
implementation files. The Intial_Shell_AFU includes an afu.qsf file where you
can add your specific files.

4.2.4. SDC File

The afu.sdc is where you include your AFU timing constraints files.

4.3. Build with make

The process of creating an N3000 FPGA image is simplified with the provided Makefile
that automates the setting of compile parameters and combining your design files with
the supplied source files. The Makefile flow starts with your design input files and ends
after Intel Quartus Prime synthesizes and places the output and a binary FPGA file
that is ready for secure signing with PACSign.

The make flow is only supported on Linux* platforms. Your development system
requires the following:

Make:

• make 3.81 (or newer)

Python:

• Python 3.6

You invoke the make flow with the following command input syntax:

• make [target] [options] [paths] [versioning]

Target—required, input only one:

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

37

https://www.guidgenerator.com/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• 2x1x25G

• 2x2x25G

• 4x25G

• 8x10G

• 2x1x25Gx2FVL

• 1x2x25G

• clean

• archive

Target archive stores whole database as a Quartus Archive (.qar) file.

Options

Option Value Description Required Default Comment

GUI 0 run selected stage NO 0

1 open Intel Quartus
Prime GUI

SEED 0 - 232-1 fitter seed NO 1 Helpful in achieving
timing closure

STAGE compile execute full flow
(step-by-step)

YES Not applicable

synthesis execute analysis and
synthesis

calls ipgenerate

fitter execute fitting (Fit,
Place, Route)

calls ipgenerate

fitter-timing execute fitter and
timing analysis

calls ipgenerate

analysis-timing execute timing
analysis

requires completed
fitter

analysis-power execute power
analysis

requires completed
fitter

assembler execute assembler requires completed
fitter

ipgenerate generate IPs

dummy do nothing GUI only

USE_BBS_CLK 0 do not take user clock
from BBS

NO 0

1 take user clock from
BBS

Required if CCI-P
clock uClk_usr or
uClk_usrDiv2 is
used in your
design

INCLUDE_DIAGNOSTICS 0 exclude AFU
diagnostics

NO 1

1 include AFU
diagnostics

INCLUDE_AFU_PCIE1 0 exclude AFU PCIe1 NO 1

continued...

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Option Value Description Required Default Comment

1 include AFU PCIe1

INCLUDE_MEMORY 0 exclude all EMIFs NO 1

1 include all EMIFs

INCLUDE_DDR4_A 0 exclude DDR4 A NO INCLUDE_MEMORY

1 include DDR4 A

INCLUDE_DDR4_B 0 exclude DDR4 B NO INCLUDE_MEMORY

1 include DDR4 B

INCLUDE_DDR4_C 0 exclude DDR4 C NO INCLUDE_MEMORY

1 include DDR4 C

INCLUDE_QDR 0 exclude QDR NO INCLUDE_MEMORY

1 include QDR

MAC_LIGHTWEIGHT_MODE 0 disabled NO 0 Disabled non
required features in
MACs for less logic
consumption

1 enabled

DATAPATH_MODE normal Ethernet aggregated
mode

NO normal

disaggregated disaggregated
Ethernet mode

lightweight lightweight Ethernet
mode

INCLUDE_SEU 0 Excludes SEU
detection circuit

NO 1

1 Includes SEU
detection circuit

ARCHIVE_NAME [any string] .qar archive name
for .qdb archive

NO snapshot.qar used by archive
target

Usage Examples:

1. Set up your shell environment to use N3000 provided Intel Quartus Prime

$ source <N3000 Installation Directory>/inteldevstack/bin/init_env.sh

The example of the N3000 Make command runs the full compile process of the 2 x 2 x
25 GbE factory image using the command line (non-GUI) mode with fitter seed equal
to 5:

$ make 2x2x25G SEED=5 STAGE=compile

Note: Some designs may require multiple seed passes using seeds 1 to 8 to achieve timing
closure. Also, the Design Space Explorer does not work with the N3000 make design
flow.

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Paths

Path Description Default

PROJECT_FILE main project qpf prj/pac_baseline/chip.qpf

PAC_ROOT N3000 sources root where main .qip is located hw/pac

AFU_ROOT AFU sources root where afu.qsf is located hw/afu/hw

Versioning

Versioning Description Default

PAC_VER_MAJOR SemVer Major. 0 - 15 0

PAC_VER_MINOR SemVer Minor. 0 – 255 0

PAC_VER_PATCH SemVer Patch. 0 – 15 0

REVISION_ID 32-bit 0

AFU_REVISION_ID 12-bit 0

Pr_Interface_ID

The OPAE tool fpgainfo lists the target configuration unique Pr_Interface_ID:

TARGET Pr_Interface_ID

8x10G 901DD697-CA79-4B05-B843-8138CEFA2846

4x25G F3C99413-5081-4AAD-BCED-07EB84A6D0BB

2x2x25G A5D72A3C-C8B0-4939-912C-F715E5DC10CA

The build process combines your afu.qsf file with a top level chip.qsf that
includes external memory interfaces, MACs, and the encrypted CCI-P and
management blocks.

To compile the hello_afu targeting the 2x2x25 network interface, execute the
following in the top directory:

$ cd $N3000_EXAMPLE_ROOT/hello_afu
$ make 2x2x25G GUI=1 INCLUDE_DIAGNOSTICS=0 INCLUDE_MEMORY=0 \
PAC_VER_MAJOR=3 PAC_VER_MINOR=5 PAC_VER_PATCH=6 \
REVISION_ID=12345678 INCLUDE_AFU_PCIE1=0

The following example steps use the Quartus GUI to illustrate the design flow. Once
you are familiar with this flow you may prefer to use the non-GUI mode and
additionally utilization of user created scripted or automated build flow.

This brings up the Intel Quartus Prime GUI. Click the Start Compilation play button.

Note: The Launch IP Upgrade Tool button appears. You can safely ignore this warning.

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When your compile is complete, do not close Intel Quartus Prime, so that you can
continue with the next steps.

Related Information

Ethernet Interface on page 19

4.4. Check Timing

Verify your compiled design meets timing and power requirements by performing the
following steps:

1. Go to the "Tasks" pane and select “Compilation Report”.

Figure 24. Compilation Report

2. Under Timing Analyzer, verify no failing timing paths.

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 25. Timing Analyzer

You can safely ignore the "Unconstrained Paths" report in this release.

3. Select Power Analyzer and check that “Total Thermal Power Dissipation” is
within the thermal characteristics of your server air flow.

4. Check the Thermal Specifications section of the N3000 Data Sheet.
The power results shown in the power analyzer are based on the worst case FPGA
junction temperature of 100° C.

Figure 26. Power Analyzer Summary

5. Select Project ➤ Generate Early Power Estimator File to perform additional
power analysis in the Intel Arria 10 Early Power Estimator by clicking on this
download.

For more information, refer to the Early Power Estimator for Intel Arria 10 FPGAs
User Guide.

The Early Power Estimator (EPE) file can take a few minutes to generate. The
default EPE file location is /prj/pac_baseline/chip_early_pwr.csv.
This .csv file can be imported into the Early Power Estimator for detailed analysis
of power consumption of your design.

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

42

https://www.intel.com/content/www/us/en/programmable/support/support-resources/operation-and-testing/power/a10-power-estimator.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 27. Generate Early Power Estimator File

Related Information

Early Power Estimator for Intel Arria 10 FPGAs User Guide

4.5. Loading Your AFU into the Intel FPGA PAC N3000

Once your design has been compiled using the make process, a new directory is
created with all build report files and FPGA programming files. To see these files, do
the following after successfully running make:

Note: Must be in the same directory where make was invoked.

$ cd prj/pac_baseline/build/
$ $ ls -1
chip.asm.rpt
chip.done
chip.fit.finalize.rpt
chip.fit.place.rpt
chip.fit.plan.rpt
chip.fit.route.rpt
chip.fit.rpt
chip.fit.summary
chip.flow.rpt
chip_out.sof.rpt
chip.pin
chip.pow.rpt
chip.pow.summary
chip.sld
chip.sta.rpt
chip.sta.summary
chip.syn.rpt
chip.syn.smsg
chip.syn.summary
pac-n3000.map
pac-n3000-secure-update-raw.bin
pac-n3000.sof

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

43

https://www.intel.com/content/www/us/en/programmable/documentation/mhi1422370348549.html#mhi1422303323525
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The file pac-n3000-secure-update-raw.bin is a binary file formatted to be
loaded into the N3000 FPGA flash. Before this file can be loaded into the flash, the
prepended authentication blocks generated by PACSign must be added to the binary
file prior to loading using the OPAE tool fpgasupdate. The following instructions
guide you in creating an image file with the proper authentication blocks for an N3000
that has not had the root entry hash programmed. Typically, when developing an AFU
in a lab environment, do not program the root entry hash until the AFU is production
ready.

For more information, refer to the Security User Guide for Intel FPGA Programmable
Acceleration Card N3000 Variants.

Before running PACSign, ensure you have the following environment setting:

export PYTHONPATH=/usr/local/lib/python3.6/site-packages/

1. Create the image and load using fpgasupdate.

$ PACSign SR -t UPDATE -H openssl_manager \
-i pac-n3000-secure-update-raw.bin -o unsigned_PAC_N3000_RSU.bin
No root key specified. Generate unsigned bitstream? Y = yes, N = no: y
No CSK specified. Generate unsigned bitstream? Y = yes, N = no: y

By responding with 'y', you are creating an unsigned binary file that can be loaded
into a N3000 board that has not had the root key hash loaded into flash.

2. Perform the fpgasupdate write process.

$ sudo fpgasupdate unsigned_PAC_N3000_RSU.bin <PCIe B:D.F>

Note: The fpgasupdate write process take approximately 40 minutes to
complete.

3. Once fpgasupdate completes, perform a remote system update to load the new
FPGA image, then verify the expected FPGA is loaded with OPAE tools fpgainfo
fme and fpgainfo port.

$ sudo rsu fpga <PCIe B:D.F>
$ sudo fpgainfo fme
$ sudo fpgainfo port

Related Information

Security User Guide for Intel FPGA Programmable Acceleration Card N3000 Variants

4.5.1. Loading Your FPGA Image with JTAG

In a development environment, you may wish to test new N3000 FPGA images without
storing the image in the FPGA flash. By loading the image with JTAG, there is no 40-
minute wait for the file to be loaded into flash. If the power is removed, upon power
up, your new FPGA image is replaced with the image stored in the user location of
FPGA flash.

You must obtain the following items:

• Intel FPGA Download Cable II (formerly the USB-Blaster II)

Note: You need to follow installation instructions for this device.

• Samtec* SSQ-105-03-T-D Receptacle to extend the N3000 JTAG header

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

44

https://www.intel.com/content/www/us/en/docs/programmable/683519/current/overview.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.5.1.1. Preparing Your N3000 for JTAG

1. Remove the cover to the N3000 board by removing the screws and lifting off
cover, as shown below:

Figure 28. N3000 with Cover Attached

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 29. N3000 Board Exposed

2. Turn the N3000 board over to the backside and locate "SW2" as shown below:

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 30. Bottom Side of the N3000 Board

Note: The "SW2" Switch must be in the OFF position.

You can tell the switch is set to OFF by using an Ohm meter to measure resistance
across the switch. When the switch is set to OFF, the resistance should be
approximately 10-13 K Ohms. Slide the switch using a probe tool to OFF if
required.

3. Use a 10 Position receptacle, as shown below, to extend the N3000 JTAG header
for connectivity above the heatsink to the Intel FPGA Download Cable II. Note:
Pay attention to the manufacturer and part number.

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 31. 10 Position Receptacle

Manufacturer: Samtec*
Part Number: SSQ-105-03-T-D

4. Attach the Intel FPGA Download Cable II header as shown below:

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 32. Intel FPGA Download Cable II Attached to the N3000

Note: Notice the Intel FPGA Download Cable II orientation as shown above. There
is no keying of this connector.

5. Turn OFF the power to the server and insert the N3000 card into a PCIe Gen3 X
16 slot.

6. Attach the auxiliary 12 V connection to the N3000 card, as shown below:

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 33. Auxiliary 12 V Connection

Caution: Make absolutely certain substantial server air flow velocity is provided.
The card will overheat if adequate airflow is not provided.

7. Power on server.

4.5.1.2. Disabling PCIe Automatic Error Reporting (AER)

When you program the FPGA using JTAG, the Intel Arria 10 PCIe link goes down for a
moment causing a server surprise link down event. To prevent this server event,
temporarily disable the PCIe AER for the N3000 PCIe slot using the following steps:

1. Find and record your N3000 PCIe s:b:d.f value. You will use this PCIe
s:b:d.f value later for removing the N3000 from the PCIe bus. In this example,
use this value: 0000:08:00.0.

$ sudo fpgainfo fme
Board Management Controller, MAX10 NIOS FW version D.2.0.19
Board Management Controller, MAX10 Build version D.2.0.6
//****** FME ******//
Object Id : 0xF200000
PCIe s:b:d.f : 0000:08:00.0
Device Id : 0x0b30
Numa Node : 0
Ports Num : 01
Bitstream Id : 0x23000410010309

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Bitstream Version : 0.2.3
Pr Interface Id : a5d72a3c-c8b0-4939-912c-f715e5dc10ca
Boot Page : user

2. Use the command find_RP.sh to get board root PCIe s:b:d.f.

$ cd <N3000 Install Directory>/N3000_supplemental_files/
$./find_RP.sh
0000:00:03.0 ----- >>> This is root port, take note of
this value
0000:03:00.0
0000:04:09.0
0000:08:00.0 -> intel-fpga-dev.0

3. The first entry in the list is the PCIe Root port. In this example, 0000:00:03.0 is
the root port. Your values may be different. The last entry is intel-fpga-dev.0.

4. Using the root port, find the current AER settings and record the value. Use this
value when you re-enable AER.

$ sudo setpci -s 0000:00:03.0 ECAP_AER+0x08.L
00000000
$ sudo setpci -s 0000:00:03.0 ECAP_AER+0x14.L
00002000

5. Disable AER for the root port:

$ sudo setpci -s 0000:00:03.0 ECAP_AER+0x08.L=0xffffffff
$ sudo setpci -s 0000:00:03.0 ECAP_AER+0x14.L=0xffffffff

6. Using your board PCIe s:b:d.f, remove the N3000 from the PCIe bus. If using
RHEL, you must enter the command as root:

sudo echo 1 > /sys/bus/pci/devices/0000:08:00.0/remove

4.5.1.3. Using JTAG to Load the Intel Arria 10 *.sof file

1. Start Intel Quartus Prime Programmer

$ source <N3000 Installation Directory>/inteldevstack/bin/init_env.sh
$ quartus_pgmw

2. Select auto detect and select device 10AT115S1. If you see 10M50 as the device,
then switch SW2 is not set properly – you must uninstall the card and change
SW2.

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 34. Select Device GUI

3. Right click the File column and select Change File.

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 35. Change File Selection

4. Navigate to the pac-n3000.sof file, select Program/Configure and press
Start. This programs the Intel Arria 10 FPGA with the pac-n30000.sof file. Wait
until the 100% (Successful) is shown under progress:

Figure 36. Intel Quartus Prime Programmer Pro Edition GUI

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.5.1.4. How to Rescan PCIe Bus and Re-enable PCIe AER

1. Rescan the PCIe bus to register the new FPGA.

sudo echo 1 > /sys/bus/pci/rescan

2. Verify the new FPGA is present by checking expected bitstream ID and AFU ID
using commands:

$ sudo fpgainfo fme
$ sudo fpgainfo port

3. Re-enable AER using the values read in Step 4 on page 51 of section Disabling
PCIe Automatic Error Reporting (AER) on page 50 for the card under test:

$ sudo setpci -s 0000:00:03.0 ECAP_AER+0x08.L=0x00000000
$ sudo setpci -s 0000:00:03.0 ECAP_AER+0x14.L=0x00002000

You can now run your host application with the FPGA image you loaded with JTAG.

4.5.2. AFU Clocks

The hello_afu example uses the CCI-P pClk for synchronization. In this section,
two examples are presented where the hello_afu example is modified to use a
uClk_usr in the first example and a user instantiated PLL.

In both of these examples, the BBB_ccip_async is used to perform clock crossing for
the CCI-P interface.

4.5.2.1. Hello AFU Example (uClk_usr)

The module hello_afu.sv is modified to instantiate the BBB_ccip_async module to
provide a clock crossing for the CCI-P interface between pClk and uClk_usr
domains. The modified code is shown below:

import ccip_if_pkg::*;
module hello_afu_uClk_usr
 (
 input pClk, // Core clock. CCI interface is synchronous to this clock.
 input pClk_reset, // CCI interface ACTIVE HIGH reset.

 input uClk_usr, //312.5 MHz user clock

 // CCI-P signals
 input t_if_ccip_Rx pClk_cp2af_sRxPort,
 output t_if_ccip_Tx pClk_af2cp_sTxPort
);

 `define AFU_ACCEL_UUID 128'h850adcc2_6ceb_4b22_9722_d43375b61c66
 // The AFU must respond with its AFU ID in response to MMIO reads of
 // the CCI-P device feature header (DFH). The AFU ID is a unique ID
 // for a given program. Here we generated one with the "uuidgen"
 // program and stored it in the AFU's JSON file. ASE and synthesis
 // setup scripts automatically invoke the OPAE afu_json_mgr script
 // to extract the UUID into afu_json_info.vh.
 logic [127:0] afu_id = `AFU_ACCEL_UUID;

 logic [63:0] scratch_reg;

 //uClk_usr domain CCIP signals
 t_if_ccip_Tx af2cp_sTxPort;
 t_if_ccip_Rx cp2af_sRxPort;

 ccip_async_shim ccip_async_shim (

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

54

https://github.com/OPAE/intel-fpga-bbb/wiki/BBB_ccip_async
https://github.com/OPAE/intel-fpga-bbb/wiki/BBB_ccip_async
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 .bb_softreset (pClk_reset),
 .bb_clk (pClk),
 .bb_tx (pClk_af2cp_sTxPort),
 .bb_rx (pClk_cp2af_sRxPort),
 .afu_softreset (reset),
 .afu_clk (uClk_usr),
 .afu_tx (af2cp_sTxPort),
 .afu_rx (cp2af_sRxPort)
);

 // The c0 header is normally used for memory read responses.
 // The header must be interpreted as an MMIO response when
 // c0 mmmioRdValid or mmioWrValid is set. In these cases the
 // c0 header is cast into a ReqMmioHdr.
 t_ccip_c0_ReqMmioHdr mmioHdr;
 assign mmioHdr = t_ccip_c0_ReqMmioHdr'(cp2af_sRxPort.c0.hdr);

 //
 // Receive MMIO writes
 //
 always_ff @(posedge uClk_usr)
 begin
 if (reset)
 begin
 scratch_reg <= '0;
 end
 else
 begin
 // set the registers on MMIO write request
 // these are user-defined AFU registers at offset 0x40.
 if (cp2af_sRxPort.c0.mmioWrValid == 1)
 begin
 case (mmioHdr.address)
 16'h0020: scratch_reg <= cp2af_sRxPort.c0.data[63:0];
 endcase
 end
 end
 end

 //
 // Handle MMIO reads.
 //
 always_ff @(posedge uClk_usr)
 begin
 if (reset)
 begin
 af2cp_sTxPort.c1.hdr <= '0;
 af2cp_sTxPort.c1.valid <= '0;
 af2cp_sTxPort.c0.hdr <= '0;
 af2cp_sTxPort.c0.valid <= '0;
 af2cp_sTxPort.c2.hdr <= '0;
 af2cp_sTxPort.c2.mmioRdValid <= '0;
 end
 else
 begin
 // Clear read response flag in case there was a response last cycle.
 af2cp_sTxPort.c2.mmioRdValid <= 0;

 // serve MMIO read requests
 if (cp2af_sRxPort.c0.mmioRdValid == 1'b1)
 begin
 // Copy TID, which the host needs to map the response to the
request
 af2cp_sTxPort.c2.hdr.tid <= mmioHdr.tid;

 // Post response
 af2cp_sTxPort.c2.mmioRdValid <= 1;

 case (mmioHdr.address)
 // AFU header

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 16'h0000: af2cp_sTxPort.c2.data <= {
 4'b0001, // Feature type = AFU
 8'b0, // reserved
 4'b0, // afu minor revision = 0
 7'b0, // reserved
 1'b1, // end of DFH list = 1
 24'b0, // next DFH offset = 0
 4'b0, // afu major revision = 0
 12'b0 // feature ID = 0
 };

 // AFU_ID_L
 16'h0002: af2cp_sTxPort.c2.data <= afu_id[63:0];

 // AFU_ID_H
 16'h0004: af2cp_sTxPort.c2.data <= afu_id[127:64];

 // DFH_RSVD0 and DFH_RSVD1
 16'h0006: af2cp_sTxPort.c2.data <= 64'h0;
 16'h0008: af2cp_sTxPort.c2.data <= 64'h0;

 // Scratch Register. Return the last value written
 // to this MMIO address.
 16'h0020: af2cp_sTxPort.c2.data <= scratch_reg;

 default: af2cp_sTxPort.c2.data <= 64'h0;
 endcase
 end
 end
 end
endmodule

You must edit ccip_std_afu.sv to connect the clock to your AFU. Addition to the
ccip_std_afu.sv is shown below:

hello_afu_pll afu
 (
 .pClk (pClk),
 .pClk_reset (pck_cp2af_softReset_T1),
 . uClk_usr (uClk_usr),

 .pClk_cp2af_sRxPort (pck_cp2af_sRx_T1),
 .pClk_af2cp_sTxPort (pck_af2cp_sTx_T0)
);

The file afu.qsf is modified to source the ccip_async additions as shown below:

CCI-P async shim
source $AFU_SRC_ROOT/rtl/BBB_ccip_async/hw/par/ccip_async_addenda.qsf

The afu.sdc file has this additional constraint added:

set_false_path -from [get_clocks {sys_csr_clk_pll|outclk[0]}]\
-to [get_clocks {fpga_top|inst_fiu_top|inst_ccip_fabric_top|inst_cvl_top|\
inst_user_clk|qph_user_clk_fpll_u0|xcvr_fpll_a10_0|outclk1}]

Then the build process is invoked with this make command:

make 2x2x25G GUI=1 INCLUDE_DIAGNOSTICS=0 INCLUDE_MEMORY=0 \
PAC_VER_MAJOR=3 PAC_VER_MINOR=5 PAC_VER_PATCH=6 \
REVISION_ID=12345678 INCLUDE_AFU_PCIE1=0 USE_BBS_CLK=1

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.5.2.2. Hello AFU Example (pll)

A new PLL can be instantiated to provide additional clocks in your design. These steps
are performed to add an Intel Arria 10 IOPLL to the hello_afu design:

1. Create IOPLL in using IP Catalog and set PLL to desired settings.

2. Instantiate PLL in hello_afu with ccip_async_shim to perform clock boundary
crossing.

3. Edit ccip_std_afu.sv to connect G_CLK100 to AFU.

4. Update the *.qsf and *.sdc files.

The updated hello_afu module is listed below:

import ccip_if_pkg::*;
module hello_afu_pll
 (
 input pClk, // Core clock. CCI interface is synchronous to this clock.
 input pClk_reset, // CCI interface ACTIVE HIGH reset.

 input G_CLK100, //100 MHz Global clock for PLL

 // CCI-P signals
 input t_if_ccip_Rx pClk_cp2af_sRxPort,
 output t_if_ccip_Tx pClk_af2cp_sTxPort
);

 `define AFU_ACCEL_UUID 128'h850adcc2_6ceb_4b22_9722_d43375b61c66
 // The AFU must respond with its AFU ID in response to MMIO reads of
 // the CCI-P device feature header (DFH). The AFU ID is a unique ID
 // for a given program. Here we generated one with the "uuidgen"
 // program and stored it in the AFU's JSON file. ASE and synthesis
 // setup scripts automatically invoke the OPAE afu_json_mgr script
 // to extract the UUID into afu_json_info.vh.
 logic [127:0] afu_id = `AFU_ACCEL_UUID;

 logic [63:0] scratch_reg;

pll_50Mhz u0 (
 .rst (pClk_reset), // input, width = 1, reset.reset
 .refclk (G_CLK100), // input, width = 1, refclk.clk
 .locked (), // output, width = 1, locked.export
 .outclk_0 (uClk_50) // output, width = 1, outclk0.clk
);

 //uClk_usr domain CCIP signals
 t_if_ccip_Tx af2cp_sTxPort;
 t_if_ccip_Rx cp2af_sRxPort;

 ccip_async_shim ccip_async_shim (
 .bb_softreset (pClk_reset),
 .bb_clk (pClk),
 .bb_tx (pClk_af2cp_sTxPort),
 .bb_rx (pClk_cp2af_sRxPort),
 .afu_softreset (reset),
 .afu_clk (uClk_50),
 .afu_tx (af2cp_sTxPort),
 .afu_rx (cp2af_sRxPort)
);

 // The c0 header is normally used for memory read responses.
 // The header must be interpreted as an MMIO response when
 // c0 mmmioRdValid or mmioWrValid is set. In these cases the
 // c0 header is cast into a ReqMmioHdr.
 t_ccip_c0_ReqMmioHdr mmioHdr;

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 assign mmioHdr = t_ccip_c0_ReqMmioHdr'(cp2af_sRxPort.c0.hdr);

 //
 // Receive MMIO writes
 //
 always_ff @(posedge uClk_50)
 begin
 if (reset)
 begin
 scratch_reg <= '0;
 end
 else
 begin
 // set the registers on MMIO write request
 // these are user-defined AFU registers at offset 0x40.
 if (cp2af_sRxPort.c0.mmioWrValid == 1)
 begin
 case (mmioHdr.address)
 16'h0020: scratch_reg <= cp2af_sRxPort.c0.data[63:0];
 endcase
 end
 end
 end

 //
 // Handle MMIO reads.
 //
 always_ff @(posedge uClk_50)
 begin
 if (reset)
 begin
 af2cp_sTxPort.c1.hdr <= '0;
 af2cp_sTxPort.c1.valid <= '0;
 af2cp_sTxPort.c0.hdr <= '0;
 af2cp_sTxPort.c0.valid <= '0;
 af2cp_sTxPort.c2.hdr <= '0;
 af2cp_sTxPort.c2.mmioRdValid <= '0;
 end
 else
 begin
 // Clear read response flag in case there was a response last cycle.
 af2cp_sTxPort.c2.mmioRdValid <= 0;

 // serve MMIO read requests
 if (cp2af_sRxPort.c0.mmioRdValid == 1'b1)
 begin
 // Copy TID, which the host needs to map the response to the
request
 af2cp_sTxPort.c2.hdr.tid <= mmioHdr.tid;

 // Post response
 af2cp_sTxPort.c2.mmioRdValid <= 1;

 case (mmioHdr.address)
 // AFU header
 16'h0000: af2cp_sTxPort.c2.data <= {
 4'b0001, // Feature type = AFU
 8'b0, // reserved
 4'b0, // afu minor revision = 0
 7'b0, // reserved
 1'b1, // end of DFH list = 1
 24'b0, // next DFH offset = 0
 4'b0, // afu major revision = 0
 12'b0 // feature ID = 0
 };

 // AFU_ID_L
 16'h0002: af2cp_sTxPort.c2.data <= afu_id[63:0];

 // AFU_ID_H
 16'h0004: af2cp_sTxPort.c2.data <= afu_id[127:64];

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 // DFH_RSVD0 and DFH_RSVD1
 16'h0006: af2cp_sTxPort.c2.data <= 64'h0;
 16'h0008: af2cp_sTxPort.c2.data <= 64'h0;

 // Scratch Register. Return the last value written
 // to this MMIO address.
 16'h0020: af2cp_sTxPort.c2.data <= scratch_reg;

 default: af2cp_sTxPort.c2.data <= 64'h0;
 endcase
 end
 end
 end
endmodule

The afu.qsf is updated as shown below:

CCI-P async shim
source $AFU_SRC_ROOT/rtl/BBB_ccip_async/hw/par/ccip_async_addenda.qsf

set_global_assignment -name IP_FILE $AFU_SRC_ROOT/rtl/pll/
pll_50Mhz.ip

set_instance_assignment -name GLOBAL_SIGNAL GLOBAL_CLOCK -to G_CLK100 -entity
pac_top

Compile the design with make as shown below:

$ make 2x2x25G INCLUDE_DIAGNOSTICS=0 INCLUDE_MEMORY=0 INCLUDE_AFU_PCIE1=0 GUI=1

Note: You may need to modify the afu.sdc file based on the new clock added.

4.5.3. Creating an AFU with High Level Synthesis (HLS)

This section describes how to create an AFU using HLS.

The Intel High Level Synthesis Accelerator Functional Unit (AFU) Design Example User
Guide is adapted to the N3000 design flow to instruct the reader in performing steps
to create a new AFU with the HLS design methodology.

You must obtain the Intel FPGA Programmable Acceleration Card N3000 HLS AFU
Design Example code from an Intel Sales Agent.

Install HLS and set up your environment.

1. Download the HLS tool from the Intel website and install.

a. From the Download Center for FPGAs web page, select "Additional Software".

b. Download "Intel High Level Synthesis Compiles".

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

59

https://fpgasoftware.intel.com/19.2/?edition=pro&platform=linux
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 37. Additional Software Tab

2. Set downloaded HLSProSetup-19.2.0.57-linux.run file as executable and
run:

$ chmod +x HLSProSetup-19.2.0.57-linux.run
$ sudo ./HLSProSetup-19.2.0.57-linux.run

3. Select the N3000 Quartus Development install directory as the Installation
Directory for HLS Compiler as shown below:

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

60

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 38. Installing Directory GUI

/home/<your_id>/inteldevstack/intelFPGA_pro

4. Follow instructions in Section 1.3 of the Intel High Level Synthesis Compiler Pro
Edition: Getting Started Guide.

For setup of the HLS Compiler, make the HLS initialization script executable:

$ chmod +x <N3000 Install Directory>/inteldevstack/intelFPGA_pro/hls/
init_hls.sh

This completes the installation process.

Related Information

• Intel High Level Synthesis Accelerator Functional Unit (AFU) Design Example User
Guide

• Intel High Level Synthesis Compiler Pro Edition: Getting Started Guide

4.5.3.1. Setting Up a Shell for HLS Development Work

1. Once the HLS is set up, set up the shell for a N3000 development environment
and HLS.

$ source <N3000 Install Directory>/inteldevstack/bin/init_env.sh
$ source <N3000 Install Directory>/inteldevstack/intelFPGA_pro/hls/
init_hls.sh

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

61

https://www.intel.com/content/www/us/en/programmable/documentation/div1537518568620.html
https://www.intel.com/content/www/us/en/programmable/documentation/div1537518568620.html
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462479481465.html#ulj1521476282903
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. You must have ModelSim installed and your PATH variable set to invoke vsim
setup on your machine.

3. Put Platform Designer version 19.2 in your PATH, using the following command:

$ export PATH=$PATH: <N3000 Install Directory>/inteldevstack/intelFPGA_pro/\
qsys/bin

You are now ready to run the HLS example in this shell. You must use the above
steps for future N3000 HLS development shell set up.

The N3000 AFU design environment differs from the Intel PAC with Intel Arria 10
GX FPGA:

• N3000 uses a flat design with a static binary file rather than a partial
reconfiguration.

• N3000 does not support an ASE simulation environment.

• N3000 does not support a Platform Interface Manager design flow.

The N3000 HLS design flow is changed to accommodate these differences.

4.5.3.2. Using the Initial Shell Design as a Shell

The Intel N3000 Acceleration Stack for Development provides the
Initial_Shell_Design as a starting point for your created designs. The
Initial_Shell_Design is used as a shell for inclusion of the HLS AFU example.

1. Copy the provided Initial_Shell_Design to a new directory for your tutorial
work.

$ mkdir hls_example
$ cd hls_example
$ cp -R $N3000_EXAMPLE_ROOT/Initial_Shell_AFU/*

2. Copy the Intel provided HLS AFU example .tar file to your hls_example/hw
directory and untar

$ cp <Download directory>/hls_afu_2019-04-30.tar hls_example/hw/.
$ cd hls_example/hw
$ tar xf hls_afu_2019-04-30.tar
$ cd hls_afu/hw/rtl/hls

3. Build and emulate the design using x86 instructions and run these commands:

$ make test-x86-64
i++ src/hls_afu.cpp src/test.cpp --fp-relaxed -ghdl -march=x86-64 -o
test-x86-64
+--+
| Run ./test-x86-64 <n> to execute the test. |
| <n> is 0, 1, or 2 depending on desired |
| test behavior: |
| <n> | effect |
| ------+-------------------- |
0	test both (default)
1	test ac_int only
2	test float only
+--+

$./test-x86-64
Control which component gets tested by passing an integer!
arg | effect
------+--------------------
 0 | test both (default)

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

62

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 1 | test ac_int only
 2 | test float only
test AC_INT version and FLOAT version

AC_INT COMPONENT - 81 ELEMENTS
ac_inc:
sizeof(uint512) = 64 (64)
number of 512 bit (64-byte) numbers: 6
PASS

FLOATING-POINT COMPONENT - 81 ELEMENTS
fp_inc:
PASS
OVERALL:
PASSED

4. Generate RTL and simulate the generated RTL with the ModelSim simulator:

$ make test-fpga
$./test-fpga
Control which component gets tested by passing an integer!
arg | effect
------+--------------------
 0 | test both (default)
 1 | test ac_int only
 2 | test float only
test AC_INT version and FLOAT version

AC_INT COMPONENT - 81 ELEMENTS
ac_inc:
sizeof(uint512) = 64 (64)
number of 512 bit (64-byte) numbers: 6
PASS

FLOATING-POINT COMPONENT - 81 ELEMENTS
fp_inc:
PASS
OVERALL:
PASSED

5. Confirm that the outputs from the test-x86-64 command and the test-fpga
command match.

The test-x86-64 command runs C++ code on the processor, while the test-
fpga command compiles the C++ source to Verilog RTL and then simulates the
generated RTL using the testbench defined in the code.

For instructions about how to view the waveforms for this component, see the
Intel High Level Synthesis Compiler User Guide.

6. Navigate to the qsys directory and open the system using Platform Designer.

$ cd ../qsys
$ qsys-edit hls_afu_container.qsys

In the Open System dialog box, select None for the Quartus project dropdown.

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 39. Open System GUI

/home/<your-id>/VistaCreek/releases/r1_3/hls_test/hls_example/hw/hls_afu/hw/rtl/qsys/hls_afu_

Note: You can safely ignore the device part number for this example.

7. Click Open.

8. Click Close on the Open System Completed pop up.

9. To reload the system and ensure that all search paths are correct, click on
Validate System Integrity at the bottom of the Platform Designer window.

10. After Validate System Integrity successfully completes, click Close. Investigate
connectivity of Platform Designer components.

Figure 40. System View GUI

11. Generate HDL by clicking Generate HDL, then in Generation pop up, click
Generate and Save Changes. You may safely ignore warnings. Click Close.

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

64

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 41. Generate Completed GUI

12. Exit Platform Designer and change directory to the hw/hls_afu/hw/rtl
directory and verify contents:

$ cd ..
$ ls
afu.sv BBB_cci_mpf BBB_ccip_avmm cci-if ccip_interface_reg.sv
ccip_std_afu.sv filelist.txt hls hls_afu.json pcie qsys

The N3000 does not support Intel AFU Simulation Environment (ASE) for co-
simulation of AFU RTL and host software.

Related Information

Intel High Level Synthesis Accelerator Functional Unit (AFU) Design Example User
Guide

4.5.3.3. Compiling the Design and Producing a new N3000 FPGA Bitstream

To compile the design and produce a new N3000 FPGA bitstream, perform the
following steps:

1. Copy the cci-if and pcie directories to the hw/hls_afu/hw/rtl directory

$ cp -R ../../../afu/hw/rtl/cci-if .
$ cp -R ../../../afu/hw/rtl/pcie .

The cci-if and pcie directories were included in the Intial_Shell_Desgin
and these directories are needed to compile the HLS AFU example.

2. The HLS Example provides an ccip_std_afu.sv file that is based on the N3000.
You must update the ccip_std_afu.sv file with N3000 interfaces. The updated
code is shown below:

//

// Copyright (c) 2013-2016, Intel Corporation
//

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

65

https://www.intel.com/content/www/us/en/programmable/documentation/div1537518568620.html
https://www.intel.com/content/www/us/en/programmable/documentation/div1537518568620.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Intel Corporation nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Module Name : ccip_std_afu
// Project : ccip afu top
// Description : This module instantiates CCI-P compliant AFU

//

// Include MPF data types, including the CCI interface pacakge.

//import ccip_if_pkg::*;
`include "cci_mpf_if.vh"
import cci_mpf_csrs_pkg::*;

module ccip_std_afu #(
 parameter UPL_VERSION = 32'h2019_0905,
 parameter LOG2_DP_DATA_PATH1_WIDTH = 9,
 parameter LOG2_DP_DATA_PATH0_WIDTH = 9,
 parameter DP_CHA_WIDTH = 2,
 parameter NUM_AVST_IF_LINE = 2,
 parameter NUM_AVST_IF_FVL = 2,
 parameter LOG2_MAC_DATA_WIDTH = 6,
 parameter USR_ERROR_WIDTH = 1,
 parameter LIGHTWEIGHT_MODE = 0,
 parameter TIMESTAMP_PASS = 0,

 parameter int TIMESTAMP_WIDTH = 96
) (
 input logic G_CLK100,// 100MHz global
reference clock
 input logic
pClk, // 400MHz - CCI-P clock domain. Primary interface
clock
 input logic
pClkDiv2, // not used.
 input logic
pClkDiv4, // not used.
 input logic
uClk_usr, // User clock domain. Refer to clock programming
guide
 input logic
uClk_usrDiv2, // User clock domain. Half the programmed
frequency

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 input logic
pck_cp2af_softReset, // CCI-P ACTIVE HIGH Soft Reset
 input logic [1:0]
pck_cp2af_pwrState, // CCI-P AFU Power State
 input logic
pck_cp2af_error, // CCI-P Protocol Error Detected
 // Interface structures
 input t_if_ccip_Rx pck_cp2af_sRx, //
CCI-P Rx Port
 output t_if_ccip_Tx pck_af2cp_sTx, //
CCI-P Tx Port

 input logic pcie1_pipe_gen3_x8_ref_clk,
 input logic pcie1_pcie_pins_perst_n,
 input logic [7:0]
pcie1_pipe_gen3_x8_rx_serial,
 output logic [7:0]
pcie1_pipe_gen3_x8_tx_serial,

 input logic ing_egr_clock,
 output logic fvl_40g_bp
[NUM_AVST_IF_LINE],
 output logic [1:0]
mac2_10g_avalon_st_pause_data[NUM_AVST_IF_LINE],
 output logic [1:0]
mac_10g_avalon_st_pause_data [NUM_AVST_IF_LINE],

 input logic
ing_in_clk[NUM_AVST_IF_LINE],
 input logic
ing_in_rst[NUM_AVST_IF_LINE],
 input logic [USR_ERROR_WIDTH-1:0]
ing_in_err[NUM_AVST_IF_LINE],
 input logic
ing_in_val[NUM_AVST_IF_LINE],
 input logic
ing_in_sop[NUM_AVST_IF_LINE],
 input logic
ing_in_eop[NUM_AVST_IF_LINE],
 input logic [2**LOG2_DP_DATA_PATH0_WIDTH - 1:0]
ing_in_dat[NUM_AVST_IF_LINE],
 input logic [(LOG2_DP_DATA_PATH0_WIDTH-3) -1:0]
ing_in_mty[NUM_AVST_IF_LINE],
 output logic
ing_in_rdy[NUM_AVST_IF_LINE],
 output logic [(8/NUM_AVST_IF_LINE)-1:0]
ing_in_fpga_internal_pause_req[NUM_AVST_IF_LINE],
 input logic [DP_CHA_WIDTH-1:0]
ing_in_cha[NUM_AVST_IF_LINE],
 input logic [TIMESTAMP_WIDTH-1:0]
ing_in_timestamp_96b[NUM_AVST_IF_LINE],

 input logic
ing_out_clk[NUM_AVST_IF_LINE],
 input logic
ing_out_rst[NUM_AVST_IF_LINE],
 output logic
ing_out_sop[NUM_AVST_IF_LINE],
 output logic
ing_out_eop[NUM_AVST_IF_LINE],
 output logic
ing_out_val[NUM_AVST_IF_LINE],
 input logic
ing_out_rdy[NUM_AVST_IF_LINE],
 input logic [(8/NUM_AVST_IF_LINE)-1:0]
ing_out_fpga_internal_pause_req[NUM_AVST_IF_LINE],
 output logic [(LOG2_DP_DATA_PATH1_WIDTH-3) -1:0]
ing_out_mty[NUM_AVST_IF_LINE],
 output logic [2**LOG2_DP_DATA_PATH1_WIDTH - 1:0]
ing_out_dat[NUM_AVST_IF_LINE],
 output logic [USR_ERROR_WIDTH-1:0]

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

67

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ing_out_err[NUM_AVST_IF_LINE],
 output logic [DP_CHA_WIDTH-1:0]
ing_out_cha[NUM_AVST_IF_LINE],
 output logic [TIMESTAMP_WIDTH-1:0]
ing_out_timestamp_96b[NUM_AVST_IF_LINE],

 input logic
egr_in_clk[NUM_AVST_IF_FVL],
 input logic
egr_in_rst[NUM_AVST_IF_FVL],
 input logic [USR_ERROR_WIDTH-1:0]
egr_in_err[NUM_AVST_IF_FVL],
 input logic
egr_in_val[NUM_AVST_IF_FVL],
 input logic
egr_in_sop[NUM_AVST_IF_FVL],
 input logic
egr_in_eop[NUM_AVST_IF_FVL],
 input logic [2**LOG2_DP_DATA_PATH1_WIDTH - 1:0]
egr_in_dat[NUM_AVST_IF_FVL],
 input logic [DP_CHA_WIDTH-1:0]
egr_in_cha[NUM_AVST_IF_FVL], // NB: not used
currently
 input logic [(LOG2_DP_DATA_PATH1_WIDTH-3) -1:0]
egr_in_mty[NUM_AVST_IF_FVL],
 output logic
egr_in_rdy[NUM_AVST_IF_FVL],
 output logic [(8/NUM_AVST_IF_LINE)-1:0]
egr_in_fpga_internal_pause_req[NUM_AVST_IF_LINE],
 input logic [TIMESTAMP_WIDTH-1:0]
egr_in_timestamp_96b[NUM_AVST_IF_LINE],

 input logic
egr_out_clk[NUM_AVST_IF_FVL],
 input logic
egr_out_rst[NUM_AVST_IF_FVL],
 output logic
egr_out_sop[NUM_AVST_IF_FVL],
 output logic
egr_out_eop[NUM_AVST_IF_FVL],
 output logic
egr_out_val[NUM_AVST_IF_FVL],
 input logic
egr_out_rdy[NUM_AVST_IF_FVL],
 input logic [(8/NUM_AVST_IF_LINE)-1:0]
egr_out_fpga_internal_pause_req[NUM_AVST_IF_LINE],
 output logic [DP_CHA_WIDTH-1:0]
egr_out_cha[NUM_AVST_IF_FVL],
 output logic [(LOG2_DP_DATA_PATH0_WIDTH-3) -1:0]
egr_out_mty[NUM_AVST_IF_FVL],
 output logic [2**LOG2_DP_DATA_PATH0_WIDTH - 1:0]
egr_out_dat[NUM_AVST_IF_FVL],
 output logic [USR_ERROR_WIDTH-1:0]
egr_out_err[NUM_AVST_IF_FVL],
 output logic [TIMESTAMP_WIDTH-1:0]
egr_out_timestamp_96b[NUM_AVST_IF_LINE],

`ifdef INCLUDE_DDR4
 input wire ddr4a_avmm_0_clk,
 input wire ddr4a_avmm_0_reset_n,
 input wire ddr4a_avmm_0_waitrequest,
 input wire [255:0] ddr4a_avmm_0_readdata,
 input wire ddr4a_avmm_0_readdatavalid,
 output wire [6:0] ddr4a_avmm_0_burstcount,
 output wire [255:0] ddr4a_avmm_0_writedata,
 output wire [25:0] ddr4a_avmm_0_address,
 output wire ddr4a_avmm_0_write,
 output wire ddr4a_avmm_0_read,
 output wire [31:0] ddr4a_avmm_0_byteenable,

 input wire ddr4a_avmm_1_clk,

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

68

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 input wire ddr4a_avmm_1_reset_n,
 input wire ddr4a_avmm_1_waitrequest,
 input wire [255:0] ddr4a_avmm_1_readdata,
 input wire ddr4a_avmm_1_readdatavalid,
 output wire [6:0] ddr4a_avmm_1_burstcount,
 output wire [255:0] ddr4a_avmm_1_writedata,
 output wire [25:0] ddr4a_avmm_1_address,
 output wire ddr4a_avmm_1_write,
 output wire ddr4a_avmm_1_read,
 output wire [31:0] ddr4a_avmm_1_byteenable,

 input wire ddr4b_avmm_0_clk,
 input wire ddr4b_avmm_0_reset_n,
 input wire ddr4b_avmm_0_waitrequest,
 input wire [255:0] ddr4b_avmm_0_readdata,
 input wire ddr4b_avmm_0_readdatavalid,
 output wire [6:0] ddr4b_avmm_0_burstcount,
 output wire [255:0] ddr4b_avmm_0_writedata,
 output wire [25:0] ddr4b_avmm_0_address,
 output wire ddr4b_avmm_0_write,
 output wire ddr4b_avmm_0_read,
 output wire [31:0] ddr4b_avmm_0_byteenable,

 input wire ddr4b_avmm_1_clk,
 input wire ddr4b_avmm_1_reset_n,
 input wire ddr4b_avmm_1_waitrequest,
 input wire [255:0] ddr4b_avmm_1_readdata,
 input wire ddr4b_avmm_1_readdatavalid,
 output wire [6:0] ddr4b_avmm_1_burstcount,
 output wire [255:0] ddr4b_avmm_1_writedata,
 output wire [25:0] ddr4b_avmm_1_address,
 output wire ddr4b_avmm_1_write,
 output wire ddr4b_avmm_1_read,
 output wire [31:0] ddr4b_avmm_1_byteenable,

 input wire ddr4c_avmm_clk,
 input wire ddr4c_avmm_reset_n,
 input wire ddr4c_avmm_waitrequest,
 input wire [127:0] ddr4c_avmm_readdata,
 input wire ddr4c_avmm_readdatavalid,
 output reg [6:0] ddr4c_avmm_burstcount,
 output reg [127:0] ddr4c_avmm_writedata,
 output reg [25:0] ddr4c_avmm_address,
 output reg ddr4c_avmm_write,
 output reg ddr4c_avmm_read,
 output reg [15:0] ddr4c_avmm_byteenable,

 input wire qdr_avmm_clk,
 input wire qdr_avmm_reset_n,
 input wire qdr_avmm_waitrequest [7:0],
 input wire [35:0] qdr_avmm_readdata [7:0],
 input wire qdr_avmm_readdatavalid
[7:0],
 output reg [2:0] qdr_avmm_burstcount [7:0],
 output reg [35:0] qdr_avmm_writedata [7:0],
 output reg [21:0] qdr_avmm_address [7:0],
 output reg qdr_avmm_write [7:0],
 output reg qdr_avmm_read [7:0]
`endif
);

localparam SUB_AVMM_NUM = 2;
localparam AFU_ID_L = LIGHTWEIGHT_MODE ? 64'h9FFA_8731_438C_4BA3 :
64'hC000_C966_0D82_4272;
localparam AFU_ID_H = LIGHTWEIGHT_MODE ? 64'hADDF_01F4_E8B1_D90F :
64'h9AEF_FE5F_8457_0612;

`default_nettype none
 localparam NUM_SUB_AFUS = 8;
 localparam NUM_PIPE_STAGES = 2;

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 localparam C_SUB_AFUS_NOF_BITS = $clog2(NUM_SUB_AFUS);

`ifdef INCLUDE_AFU_PCIE1
 pcie1_plug pcie1_plug_inst (
 .ffs_LP32ui_vl_sync_reset_n
(pcie1_pcie_pins_perst_n), // synchronous to AVL clock
 .ffs_LP32ui_vl_sync_pwrgood_n (pcie1_pcie_pins_perst_n), //
not synchronous to AVL clock

 // PCIe pins
 .pin_pcie_ref_clk_p (pcie1_pipe_gen3_x8_ref_clk),
 .pin_pcie_in_perst_n (pcie1_pcie_pins_perst_n), //
connected to HIP
 .pin_pcie_rx_p (pcie1_pipe_gen3_x8_rx_serial),
 .pin_pcie_tx_p (pcie1_pipe_gen3_x8_tx_serial)
);
`endif

/* // ===
 // Register SR <--> PR signals at interface before consuming it
 // ===

 (* noprune *) logic [1:0] pck_cp2af_pwrState_T1;
 (* noprune *) logic pck_cp2af_error_T1;

 logic pck_cp2af_softReset_T1;
 t_if_ccip_Rx pck_cp2af_sRx_T1;
 t_if_ccip_Tx pck_af2cp_sTx_T0;

 // ===
 // Register PR <--> PR signals near interface before consuming it
 // ===

 ccip_interface_reg inst_green_ccip_interface_reg (
 .pClk (pClk),
 .pck_cp2af_softReset_T0 (pck_cp2af_softReset),
 .pck_cp2af_pwrState_T0 (pck_cp2af_pwrState),
 .pck_cp2af_error_T0 (pck_cp2af_error),
 .pck_cp2af_sRx_T0 (pck_cp2af_sRx),
 .pck_af2cp_sTx_T0 (pck_af2cp_sTx_T0),

 .pck_cp2af_softReset_T1 (pck_cp2af_softReset_T1),
 .pck_cp2af_pwrState_T1 (pck_cp2af_pwrState_T1),
 .pck_cp2af_error_T1 (pck_cp2af_error_T1),
 .pck_cp2af_sRx_T1 (pck_cp2af_sRx_T1),
 .pck_af2cp_sTx_T1 (pck_af2cp_sTx)
); */

 //split c0rx into host and mmio
 wire afu_clk;
 assign afu_clk = pClk ;
 t_if_ccip_Rx pck_cp2af_mmio_sRx;
 t_if_ccip_Rx pck_cp2af_host_sRx;
 always_comb
 begin
 pck_cp2af_mmio_sRx = pck_cp2af_sRx;
 pck_cp2af_host_sRx = pck_cp2af_sRx;
 //disable rsp valid on mmio path
 pck_cp2af_mmio_sRx.c0.rspValid = 0;
 //disable mmio valid on host path
 pck_cp2af_host_sRx.c0.mmioRdValid = 0;
 pck_cp2af_host_sRx.c0.mmioWrValid = 0;
 end

 // ==
 //
 // Instantiate a memory properties factory (MPF) between the external
 // interface and the AFU, adding support for virtual memory and
 // control over memory ordering.
 //

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 // ==

 //
 // The AFU exposes the primary AFU device feature header (DFH) at MMIO
 // address 0. MPF defines a set of its own DFHs. The AFU must
 // build its feature chain to point to the MPF chain. The AFU must
 // also tell the MPF module the MMIO address at which MPF should start
 // its feature chain.
 //
 //Note: with ENABLE_SEPARATE_MMIO_FIFO, MPF will not receive or forward
 //any mmio requests
 localparam MPF_DFH_MMIO_ADDR = 'h0000;
 localparam MPF_DFH_MMIO_NEXT_ADDR = 'h0000;

 //
 // MPF represents CCI as a SystemVerilog interface, derived from the
 // same basic types defined in ccip_if_pkg. Interfaces reduce the
 // number of internal MPF module parameters, since each internal MPF
 // shim has a bus connected toward the AFU and a bus connected toward
 // the FIU.
 //

 //
 // Expose FIU as an MPF interface
 //
 cci_mpf_if fiu(.clk(afu_clk));

 // The CCI wires to MPF mapping connections have identical naming to
 // the standard AFU. The module exports an interface named "fiu".
 ccip_wires_to_mpf
 #(
 // All inputs and outputs in PR region (AFU) must be registered!
 .REGISTER_INPUTS(1),
 .REGISTER_OUTPUTS(1)
)
 map_ifc
 (
 .pClk(afu_clk),
 .pck_cp2af_softReset(pck_cp2af_softReset),
 .pck_cp2af_sRx(pck_cp2af_host_sRx),
 .pck_af2cp_sTx(pck_af2cp_sTx),
 .*
);

 //
 // Instantiate MPF with the desired properties.
 //
 cci_mpf_if afu(.clk(afu_clk));

 cci_mpf
 #(
 // Should read responses be returned in the same order that
 // the reads were requested?
 .SORT_READ_RESPONSES(1),

 // Should the Mdata from write requests be returned in write
 // responses? If the AFU is simply counting write responses
 // and isn't consuming Mdata, then setting this to 0 eliminates
 // the memory and logic inside MPF for preserving Mdata.
 .PRESERVE_WRITE_MDATA(0),

 // Enable virtual to physical translation? When enabled, MPF
 // accepts requests with either virtual or physical addresses.
 // Virtual addresses are indicated by setting the
 // addrIsVirtual flag in the MPF extended Tx channel
 // request header.
 .ENABLE_VTP(0),

 // Enable mapping of eVC_VA to physical channels? AFUs that both
use
 // eVC_VA and read back memory locations written by the AFU must

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

71

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

either
 // emit WrFence on VA or use explicit physical channels and enforce
 // write/read order. Each method has tradeoffs. WrFence VA is
expensive
 // and should be emitted only infrequently. Memory requests to
eVC_VA
 // may have higher bandwidth than explicit mapping. The MPF module
for
 // physical channel mapping is optimized for each CCI platform.
 //
 // If you set ENFORCE_WR_ORDER below you probably also want to set
 // ENABLE_VC_MAP.
 //
 // The mapVAtoPhysChannel extended header bit must be set on each
 // request to enable mapping.
 .ENABLE_VC_MAP(0),
 // When ENABLE_VC_MAP is set the mapping is either static for the
entire
 // run or dynamic, changing in response to traffic patterns. The
mapper
 // guarantees synchronization when the mapping changes by emitting a
 // WrFence on eVC_VA and draining all reads. Ignored when
ENABLE_VC_MAP
 // is 0.
 .ENABLE_DYNAMIC_VC_MAPPING(0),

 // Should write/write and write/read ordering within a cache
 // be enforced? By default CCI makes no guarantees on the order
 // in which operations to the same cache line return. Setting
 // this to 1 adds logic to filter reads and writes to ensure
 // that writes retire in order and the reads correspond to the
 // most recent write.
 //
 // *** Even when set to 1, MPF guarantees order only within
 // *** a given virtual channel. There is no guarantee of
 // *** order across virtual channels and no guarantee when
 // *** using eVC_VA, since it spreads requests across all
 // *** channels. Synchronizing writes across virtual channels
 // *** can be accomplished only by requesting a write fence on
 // *** eVC_VA. Syncronizing writes across virtual channels
 // *** and then reading back the same data requires both
 // *** requesting a write fence on eVC_VA and waiting for the
 // *** corresponding write fence response.
 //
 .ENFORCE_WR_ORDER(0),

 // Enable partial write emulation. CCI has no support for masked
 // writes that merge new data with existing data in a line. MPF
 // adds byte-level masks to the write request header and emulates
 // partial writes as a read-modify-write operation. When coupled
 // with ENFORCE_WR_ORDER, partial writes are free of races on the
 // FPGA side. There are no guarantees of atomicity and there is
 // no protection against races with CPU-generates writes.
 .ENABLE_PARTIAL_WRITES(0),

 // Address of the MPF feature header. See comment above.
 .DFH_MMIO_BASE_ADDR(MPF_DFH_MMIO_ADDR),
 .DFH_MMIO_NEXT_ADDR(MPF_DFH_MMIO_NEXT_ADDR)
)
 mpf
 (
 .clk(afu_clk),
 .fiu,
 .afu,
 .c0NotEmpty(),
 .c1NotEmpty()
);

 // ==
 //

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

72

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 // Now CCI is exposed as an MPF interface through the object named
 // "afu". Two primary strategies are available for connecting
 // a design to the interface:
 //
 // (1) Use the MPF-provided constructor functions to generate
 // CCI request structures and pass them directly to MPF.
 // See, for example, cci_mpf_defaultReqHdrParams() and
 // cci_c0_genReqHdr() in cci_mpf_if_pkg.sv.
 //
 // (1) Map "afu" back to standard CCI wires. This is the strategy
 // used below to map an existing AFU to MPF.
 //
 // ==

 //
 // Convert MPF interfaces back to the standard CCI structures.
 //
 t_if_ccip_Rx mpf2af_sRxPort;
 t_if_ccip_Tx af2mpf_sTxPort;

 //
 // The cci_mpf module has already registered the Rx wires heading
 // toward the AFU, so wires are acceptable.
 //
 always_comb
 begin
 mpf2af_sRxPort.c0 = afu.c0Rx;
 mpf2af_sRxPort.c1 = afu.c1Rx;

 mpf2af_sRxPort.c0TxAlmFull = afu.c0TxAlmFull;
 mpf2af_sRxPort.c1TxAlmFull = afu.c1TxAlmFull;

 afu.c0Tx = cci_mpf_cvtC0TxFromBase(af2mpf_sTxPort.c0);
 if (cci_mpf_c0TxIsReadReq(afu.c0Tx))
 begin
 // Treat all addresses as virtual.
 afu.c0Tx.hdr.ext.addrIsVirtual = 1'b0;

 // Enable eVC_VA to physical channel mapping. This will only
 // be triggered when ENABLE_VC_MAP is set above.
 afu.c0Tx.hdr.ext.mapVAtoPhysChannel = 1'b0;

 // Enforce load/store and store/store ordering within lines.
 // This will only be triggered when ENFORCE_WR_ORDER is set.
 afu.c0Tx.hdr.ext.checkLoadStoreOrder = 1'b0;
 end

 afu.c1Tx = cci_mpf_cvtC1TxFromBase(af2mpf_sTxPort.c1);
 if (cci_mpf_c1TxIsWriteReq(afu.c1Tx))
 begin
 // Treat all addresses as virtual.
 afu.c1Tx.hdr.ext.addrIsVirtual = 1'b0;

 // Enable eVC_VA to physical channel mapping. This will only
 // be triggered when ENABLE_VC_MAP is set above.
 afu.c1Tx.hdr.ext.mapVAtoPhysChannel = 1'b0;

 // Enforce load/store and store/store ordering within lines.
 // This will only be triggered when ENFORCE_WR_ORDER is set.
 afu.c1Tx.hdr.ext.checkLoadStoreOrder = 1'b0;
 end

 afu.c2Tx = af2mpf_sTxPort.c2;
 end

//
==
===================
// User AFU goes here
//
==

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

73

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

===================

afu afu_inst(
 .afu_clk(afu_clk),

 .reset (fiu.reset) ,
 .cp2af_sRxPort (mpf2af_sRxPort) ,
 .cp2af_mmio_c0rx (pck_cp2af_mmio_sRx.c0) ,
 .af2cp_sTxPort (af2mpf_sTxPort)
);
//##//
//##//
//##//
//##//
//##//
//
// USER LOGIC - ADD/REMOVE/MODIFY your logic below
//

endmodule

3. Copy attached afu.qsf file into the design.

4. Compile design using make flow. Note: You need to set items to remove
diagnostics and external memories.

$ make 2x2x25G GUI=1 INCLUDE_DIAGNOSTICS=0 INCLUDE_MEMORY=0 \
PAC_VER_MAJOR=3 PAC_VER_MINOR=5 PAC_VER_PATCH=6 \
REVISION_ID=12345678 INCLUDE_AFU_PCIE1=0 AFU_ROOT=<absolute path>/hw/
hls_afu/hw

Note: The compile process takes approximately 1.5 hours.

4.5.3.4. Verifying Timing Constraints are Satisfied

When the compile is complete, verify timing constraints are satisfied. You can verify
this in the GUI using Timing Analyzer or you can review the generated report file in
prj/pac_baseline/build/chip.sta.summary.

1. Go to the $ cd prj/pac_baseline/build directory.

2. Review chip.sta.summary for timing constraints with negative slack

3. Create an unsigned FPGA image file for loading into flash. This instruction
assumes the board root key has not been programmed.

$ PACSign SR -t UPDATE -H openssl_manager -i pac-n3000-secure-update-raw.bin
\
-o unsigned_PAC_N3000_RSU.bin

Load FPGA image:

$ sudo fpgasupdate unsigned_PAC_N3000_RSU.bin <N3000 PCIe B:D.F>
>>Please note this command takes ~40 minutes to complete
$ sudo rsu fpga <N3000 PCIe B:D.F>

Load host application and run with FPGA:

a. Change directory to software:

$ cd hls_example/hw/hls_afu/sw
$ make

b. Set hugepage:

echo 200 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

74

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

c. Run the application:

$ sudo ./hls_afu_host

Using Avalon Slave at offset 0x40. No vector size specified. Default to size 64
floats. run ./hls_afu_host <vectorsize> to specify a vector size at
runtime using test vector of size 64.

d. Running Test:

AFU DFH REG = 1000010000000000
AFU ID LO = 944028430b016f3d
AFU ID HI = 5fa7fd4b867c484c
AFU NEXT = 00000000
AFU RESERVED = 00000000
end of output memory before executing kernel:
 [62] - -6259853398707798016.000000 (0xdeadbeef)
 [63] - -6259853398707798016.000000 (0xdeadbeef)
 [64] - -6259853398707798016.000000 (0xdeadbeef)
 [65] - 0.000000 (0x0)
Interrupt enabled = 00000000
Interrupt enabled = 00000001
AFU Latency: 0.04500 milliseconds
Poll success. Return = 1
check output memory:
output memory OK!
sum: Expected 715.000000, calculated 715.000000

The FPGA writes a full 512-bit word (64 bytes) to host memory, so if the size
of your test vector (in bytes) is not a multiple of 64, the FPGA will overwrite
some space at the end of output memory. fpgaPrepareBuffer() allocates
your host memory in a buffer that is a multiple of 64 bytes, so the FPGA
behavior will not affect your application. You should expect to see a single
0xdeadbeef at the end of the output memory if and only if the size of your
test vector (determined by vector_size, and the data type) is a multiple of
64 bytes (that is, if vector_size is a multiple of 16).

4. Creating an N3000 FPGA Design

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

75

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Capturing Signals in AFU with Signal Tap
This section is a short guide on adding remote Signal Tap instances to an AFU for in
system debugging. You can follow the steps in the following sections, in order of
execution to create an instrumented AFU. The hello_afu project is used in this guide
as the target AFU to be instrumented.

You need a basic understanding of Signal Tap. Please see the "Signal Tap Logic
Analyzer: Introduction & Getting Started" Web Based Training for more information.

There are two ways you can run the Signal Tap GUI:

• On a remote laptop or workstation connected through the network to a server with
the N3000 with a Signal Tap instrumented FPGA image.

Figure 42. Remote Debugging Scenarios

Intel N 3000 PAC

FPGA with
Signal Tap

Host CPUPCIe Network
Remote
Laptop,

workstation

GUI
Signal Tap

Intel Xeon Server with Intel FPGA PAC N3000 installed

Intel FPGA PAC N3000

• With a Signal Tap GUI running locally on the server with the N3000.

Figure 43. Local Debugging Scenarios

Intel N 3000 PAC

FPGA with
Signal Tap

Host CPUPCIe GUI
Signal Tap

local

Intel FPGA PAC N3000

Intel Xeon Server with Intel FPGA PAC N3000 installed

Now that you have compiled the hello_afu design, you can proceed as follows for
adding Signal Tap to the design.

683190 | 2022.07.15

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/support/training/course/odsw1164.html
https://www.intel.com/content/www/us/en/programmable/support/training/course/odsw1164.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

5.1. Adding Signal Tap to the Design

After you have compiled the hello_afu design, you can proceed as follows for
adding Signal Tap to the design.

1. Familiarize yourself with the project hierarchy. If your Project Navigator is not
already in view in your main Intel Quartus Prime window, then in the Intel Quartus
Prime window select View ➤ Project Navigator. Detach the Project Navigator
pane to expand its view. Expand the pac_top instance. Now expand the
inst_green_bs instance. Next expand inst_ccip_std_afu. Your Project
Navigator display should look as shown below:

2. For this learning tutorial, the CCI-P interface and scratch register is instrumented.
Select the afu instance in Project Navigator and right click, then select Locate
Node and finally, Locate in Design File. See screen shot below:

5. Capturing Signals in AFU with Signal Tap

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

77

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. This brings up the hello_afu.sv SystemVerilog code. Having the code available
for review while defining the signals to be instrumented is highly useful.

4. Open the Signal Tap tool to create a *.stp file defining the signals to be
instrumented. See example screen shot below on how to open the Signal Tap tool:

5. Capturing Signals in AFU with Signal Tap

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

78

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

a. The Signal Tap GUI appears as shown below:

5. Capturing Signals in AFU with Signal Tap

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

79

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

b. You can now set up a Signal Tap instance to instrument a portion of the design
for observability.

In this example, the Signal Tap instance is renamed to hello_afu to indicate
its use to instrument the hello_afu module. To rename the
auto_signaltap_0 instance, right click and select Rename Instance:

5. For the hello_afu Signal Tap instance define the clock used to sample the
signals to be instrumented. For accurate results, the instrumented signals must be
in the domain of this clock. To select the clock, select the … button under “Signal
Configuration”:

5. Capturing Signals in AFU with Signal Tap

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

80

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

a. This brings up the Node Finder tool. Find the “Look in:” listing go to the right
and click … to bring up the “Select Hierarchy Level” viewer. See screen shot:

b. In the Select Hierarchy Level viewer expand pac_top, inst_green_bs,
inst_ccip_std_afu and select afu and click OK. See screen shot:

5. Capturing Signals in AFU with Signal Tap

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

81

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

c. From reviewing the hello_afu.sv code, notice all signals are synchronous to
signal clk. In the Node Finder window, type in *clk* in the “Named” blank
and click Search. Expand each instance selection in the “Matching Nodes”
pane. Then select clk and the > to make this the signal used for clocking the
Signal Tap instance. See screen shot:

i. Press OK

ii. The Signal Configuration dock on the far right should look as shown
below:

5. Capturing Signals in AFU with Signal Tap

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

82

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. You can increase the depth of the samples captured by increasing Sample depth.
For this example, the depth is increased to 1 K. Please keep in mind, increased
depth means more FPGA resources used for the Signal Tap instance.

7. Select the signals to be added to the hello_afu Signal Tap instance by double
clicking the Double-click to add nodes area of the “Setup” dock. This brings up
the Node Finder tool. Repeat the steps above to set the “Look in:” box to narrow
the search to just the hello_afu instance. You want to see the CCI-P interface
signals and scratch pad register. Enter cp2af_sRxPort* in the "Named" entry
field and click Search. Click the >> to select all signals to give you total visibility
of the ccip RX bus input to the hello_afu. See screen shot below:

5. Capturing Signals in AFU with Signal Tap

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

83

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. Now change “Named:” to scratch* and click Search. Expand Matching Nodes
until the scratch_reg is displayed. Select scratch_reg and then >> to add the
scratch register signals to the “Nodes Found” list. See screen shot:

5. Capturing Signals in AFU with Signal Tap

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

84

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

9. Now enter af2cp_sTxPort* in the "Named" entry field and click Search to
instrument the output CCI-P bus signals. Expand the instance names in “Matching
Nodes". Do not select names ending in ~reg0. Your display should be as shown
below:

10. Click Insert and Close. Your display should be as shown below:

11. Select File ➤ Save As and save the newly created Signal Tap Logic Analyzer file
as hello_afu.stp in the current directory.

12. When asked: “Do you want to enable Signal Tap File hello_afu.stp for the
current project?” Click Yes.

13. Close the Signal Tap GUI.

14. Re-Run a full compilation to create a new FPGA implementation with hello_afu
Signal Tap instrumentation included.

15. Once the build completes, the newly created pac-n3000-secure-update-
unsigned.bin with Signal Tap instrumentation can be loaded into FPGA Flash for
storage and use as the user image loaded into the Intel Arria 10 GT FPGA.

5. Capturing Signals in AFU with Signal Tap

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

85

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.2. Loading FPGA Image

1. Change directories to the build directory where pac-n3000-secure-update-
unsigned.bin was created by make and create an unsigned FPGA image using
PACSign. Please note, this step assumes your target N3000 board has not had the
root key programmed on the board.

$ cd prj/pac_baseline/build

2. Before running PACSign, ensure you have the following environment setting:

export PYTHONPATH=/usr/local/lib/python3.6/site-packages/

3. Create the image:

$ PACSign SR -t UPDATE -H openssl_manager \
-i pac-n3000-secure-update-raw.bin -o hello_afu_unsigned.bin
No root key specified. Generate unsigned bitstream? Y = yes, N = no: y
No CSK specified. Generate unsigned bitstream? Y = yes, N = no: y

By responding with 'y', you are creating an unsigned binary file that can be loaded
into a N3000 board that has not had the root key hash loaded into flash.

4. Flash your N3000 image with this new file.

Note: This command must be done as sudo or root.

$ sudo fpgasupdate hello_afu_unsigned.bin 3e:00.0

Note: Your PCIe b:d.f value can be different from 3e:00.0 used above.

This command takes about 40 minutes to complete.

5. Perform a remote system update to load the new FPGA image using your PCIe
B.D.f.

$ sudo rsu fpga 3e:00.0

6. Verify the hello_afu_stp FPGA image is loaded with the fpgainfo port
command showing the Accelerator Id as 850adcc2-6ceb-4b22-9722-
d43375b61c66.

fpgainfo port
Board Management Controller, MAX10 NIOS FW version D.2.0.19
Board Management Controller, MAX10 Build version D.2.0.6
//****** PORT ******//
Object Id : 0xED00000
PCIe s:b:d.f : 0000:3e:00.0
Device Id : 0x0b30
Numa Node : 1
Ports Num : 01
Bitstream Id : 0x21000410030509
Bitstream Version : 0.2.3
Pr Interface Id : a5d72a3c-c8b0-4939-912c-f715e5dc10ca
Accelerator Id : 850adcc2-6ceb-4b22-9722-d43375b61c66

5.3. Set Up Connections

1. Set up a network connection between the instrumented FPGA AFU and your Signal
Tap GUI. You can set the network connection based on whether you are using a
remote or local debugging configuration. See diagram below illustrating the
connection steps:

5. Capturing Signals in AFU with Signal Tap

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

86

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 44. Remote Debugging

Intel Xeon Server with Intel FPGA PAC N3000 Installed

Intel FPGA PAC N3000

FPGA with
Signal Tap Host CPU

Remote
Laptop,

Workstation

$ mmlink -P 3333 System
Console

Connected
to TCP Port

3333

Signal Tap
GUI

NetworkPCIe

Figure 45. Local Debugging

Intel Xeon Server with Intel FPGA PAC N3000 Installed

Intel FPGA PAC N3000

FPGA with
Signal Tap Host CPU

$ mmlink -P 3333 System
Console

Connected
to TCP Port

3333

Signal Tap
GUI

LocalPCIe

2. Use the OPAE tool mmlink to enable your host system for remote Signal Tap. This
tool is included with the Intel Acceleration Stack for the N3000

3. Open a TCP port to accept incoming connection requests from remote debug
hosts.

mmlink -P 3333 –B 0xb2 Note, -B is the bus number of the target N3000 to
connect
 ------- Command line Input START ----
 Segment : -1
 Bus : 02
 Device : -1
 Function : -1
 Socket-id : -1
 Port : 3333
 IP address : 0.0.0.0
 ------- Command line Input END ----
PORT Resource found.
Remote STP : Assert Reset
Remote STP : De-Assert Reset
Read signature value 53797343 to hw
Read version value 1 to hw
Read write fifo capacity value 32 to hw
m_listen: 4
listening on ip: 0.0.0.0; port: 3333

You can debug remotely from a remote machine connected to your PAC host or
you can debug on the local PAC host.

— If debugging on a remote host:

5. Capturing Signals in AFU with Signal Tap

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

87

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

a. Make sure Intel Quartus Prime Pro Edition version 19.2 is installed and the
directory $N3000_EXAMPLE_ROOT/hello_afu/hw/pac/remote_debug
is copied to the remote host.

b. Use System Console on the remote host to connect to the debug target
host IP and TCP port using the following command:

$ cd Remote host directory with $N3000_EXAMPLE_ROOT/
hello_afu/hw/pac/\
remote_debug
$ system-console --rc_script=mmlink_setup_profiled.tcl \
remote_debug.sof <IP Address of target PAC host> 3333

Note: You must have the System Console executable binary added to your
PATH variable. The System Console executable binary is in the Intel
Quartus Prime installation directory. An example of how to update
your PATH variable is the following:

export PATH=$PATH:~/inteldevstack/intelFPGA_pro/quartus/
sopc_builder/bin

— If debugging on local host:

a. Start System Console on the local host as shown below:

$ # cd $N3000_EXAMPLE_ROOT/hello_afu/hw\
/pac/remote_debug
$ system-console --rc_script=mmlink_setup_profiled.tcl \
remote_debug.sof localhost 3333

Whether local or remote, the Intel Quartus Prime tool System Console
starts a new GUI and runs the mmlink_setup_profiled.tcl setup
script as shown below:

The script takes 1-2 minutes to complete. When the “Remote system
ready” message is displayed Signal Tap may be connected for debugging.

5. Capturing Signals in AFU with Signal Tap

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

88

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

b. Open Intel Quartus Prime GUI on the machine that is performing the
debugging (i.e. local or remote host). In Intel Quartus Prime GUI, select
File ➤ Open and navigate to the hello_afu.stp file created in previous
steps, select and open this file. The Signal Tap GUI comes up as shown
below:

c. In the Signal Tap GUI top right corner, “Hardware” pull down, where it
says “Please Select”, click on the up/down arrows to bring up the
hardware selection – select the choice that has System Console …. as
shown below:

The instance manager should show "Ready to acquire".

d. Review the hello_afu.sv code and notice the following line:

e. Enable the Signal Tap instance to capture data when
cp2af_sRxPort.c0.mmioWrValid.

5. Capturing Signals in AFU with Signal Tap

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

89

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Select the cp2af_sRxPort.co.mmioWrValid signal name, then right click the
“Trigger Conditions” value and set this to 1 as shown below:

5. Enable the hello_afu Signal Tap instance by entering F5.

6. Modify the N3000 host application to add a shared connection to the FPGA in order
to create host transactions that can cause the hello_afu STP interface to
activate. This shared connection allows the Signal Tap and host communication to
be shared through the PCIe bus.

a. Edit $N3000_EXAMPLE_ROOT/hello_afu/hw/afu/sw/hello_afu.c to
change the following line from:

res = fpgaOpen(afc_token, &afc_h, 0);

To;

res = fpgaOpen(afc_token, &afc_h, FPGA_OPEN_SHARED);

b. Save hello_afu.c and build the code

$ make

c. Run the hello_afu host code as root or sudo as shown below:

./hello_afu
Running Test
AFU DFH REG = 1000010000000000
AFU ID LO = 9722d43375b61c66
AFU ID HI = 850adcc26ceb4b22
AFU NEXT = 00000000
AFU RESERVED = 00000000
Reading Scratch Register (Byte Offset=00000080) = 00000000
MMIO Write to Scratch Register (Byte Offset=00000080) = 123456789abcdef
Reading Scratch Register (Byte Offset=00000080) = 123456789abcdef
Setting Scratch Register (Byte Offset=00000080) = 00000000
Reading Scratch Register (Byte Offset=00000080) = 00000000
Done Running Test

Your Signal Tap instance captures the write transactions as shown below:

5. Capturing Signals in AFU with Signal Tap

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

90

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4. How to Exit from the Debug Session

1. Close Signal Tap instance.

2. In System Console, select File ➤ Exit.

3. In the debug target host shell, terminate the mmlink with a <Ctrl-c> key
sequence.

4. If you want to debug another AFU, you must first terminate the active mmlink
process.

5. Before loading a new AFU, be sure to terminate any OPAE host application code
that has the currently loaded AFU open.

5.5. Troubleshooting Remote Debug Connections

If you get a Failed to connect message after invoking System Console:

1. Check if a firewall is blocking your port. If so, unblock your port by running the
following:

firewall-cmd --add-port=3333/tcp --permanent

Consider adding port tunneling. Do this when the debug target host is behind a
firewall and your remote debug host is not.

2. On the debug target host, run mmlink as before. Note that mmlink provides an
option to specify a port number. Port 3333 is the default. Refer to the following:

$ mmlink -- port=3333

3. Setup port tunneling on the remote debug host. This example shows how to do so
on a Windows remote debug host using PuTTY.

4. Use a PuTTY configuration screen as shown in the SSH Tunneling with
PuTTY figure. For <SDP>, enter the name of the debug target host. This forwards
the local port on your Windows host 4444 to port 3333 on the debug target host.

5. Capturing Signals in AFU with Signal Tap

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

91

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 46. SSH Tunneling with PuTTY

5. Click Session, specify the name of the debug target host, click Save, and
then Open. Login to the debug target host. This is your tunneling session.

Figure 47. Save and Open the Tunneling Session
This figure specifies local host and the port 4444.

5. Capturing Signals in AFU with Signal Tap

683190 | 2022.07.15

Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

Send Feedback

92

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Once the tunneling session is setup this forwarding is complete.

6. Open a Windows Command Window and issue the system-console command as
shown in the "Save and Open the Tunneling Session" figure.

7. Run the System Console with Port Forwarding command:

$ system-console --rc_script=mmlink_setup_profiled.tcl\
remote_debug.sof localhost 4444

As before, the Intel Quartus Prime System Console comes up. Wait for
the Remote system ready message on the tcl console of the System Console.

5. Capturing Signals in AFU with Signal Tap

683190 | 2022.07.15

Send Feedback Accelerator Functional Unit Developer Guide: Intel FPGA Programmable
Acceleration Card N3000 Variants

93

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Document Revision History for the Accelerator
Functional Unit Developer Guide: Intel FPGA
Programmable Acceleration Card N3000 Variants

Document
Version

Intel Acceleration Stack
Version

Changes

2022.07.15 1.3.1 Updated the Target list in section: Build with make.

2020.09.08 1.3.1 Updated in accordance with the Intel Acceleration Stack 1.3.1 Version for
Intel FPGA Programmable Acceleration Card N3000.

2020.06.15 1.3 Added enhancements for 1.3:
• Supported Ethernet Network Configurations—Added supported Board

OPN
• Ethernet Interface—Updated the Instantiated Ethernet MACs figure to

reflect that in the 4x25, only one QSFP and one Retimer are active.
• Added the following sections:

— Loading Your FPGA image with JTAG
— Prepare your N3000 for JTAG
— Disable PCIe Automatic Error Reporting (AER)
— Use JTAG to load A10 *.sof file
— How to rescan PCIe bus and re-enable PCIe AER
— AFU Clocks
— Hello_afu – uClk_usr
— Hello_afu – New PLL
— Creating an AFU with High Level Synthesis (HLS)

2019.12.06 1.1 Initial Release

683190 | 2022.07.15

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of the
application or use of any information, product, or service described herein except as expressly agreed to in
writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying
on any published information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Accelerator%20Functional%20Unit%20Developer%20Guide%20Intel%20FPGA%20Programmable%20Acceleration%20Card%20N3000%20Variants%20(683190%202022.07.15)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

	Accelerator Functional Unit Developer Guide: Intel FPGA Programmable Acceleration Card N3000 Variants
	Contents
	1. About This Document
	1.1. Acronym List

	2. Introduction
	2.1. Base Knowledge and Skills Prerequisites
	2.1.1. Considerations

	3. High Level Description
	3.1. Steps for Creating Your AFU
	3.2. N3000 Block Diagram
	3.2.1. In-Line Data Path
	3.2.2. Supported Ethernet Network Configurations
	3.2.3. Provided Files
	3.2.3.1. Directory Structure

	3.2.4. Internal Interfaces
	3.2.4.1. Core Cache Interface (CCI-P)
	3.2.4.1.1. FPGA Internal Register Access

	3.2.4.2. Ethernet Interface
	3.2.4.3. Ethernet MAC
	3.2.4.4. 40G – 25G Gearbox
	3.2.4.5. External Memory Interfaces
	3.2.4.5.1. DDR4A and DDR4B
	3.2.4.5.2. DDR4C
	3.2.4.5.3. QDR4 Interface

	3.2.4.6. Ethernet MAC Wrapper Register Access

	3.3. Factory Image Description

	4. Creating an N3000 FPGA Design
	4.1. Create New Project Directory
	4.2. Create Your AFU Design Files
	4.2.1. ccip_std_afu.sv
	4.2.2. AFU File
	4.2.3. QSF File
	4.2.4. SDC File

	4.3. Build with make
	4.4. Check Timing
	4.5. Loading Your AFU into the Intel FPGA PAC N3000
	4.5.1. Loading Your FPGA Image with JTAG
	4.5.1.1. Preparing Your N3000 for JTAG
	4.5.1.2. Disabling PCIe Automatic Error Reporting (AER)
	4.5.1.3. Using JTAG to Load the Intel Arria 10 *.sof file
	4.5.1.4. How to Rescan PCIe Bus and Re-enable PCIe AER

	4.5.2. AFU Clocks
	4.5.2.1. Hello AFU Example (uClk_usr)
	4.5.2.2. Hello AFU Example (pll)

	4.5.3. Creating an AFU with High Level Synthesis (HLS)
	4.5.3.1. Setting Up a Shell for HLS Development Work
	4.5.3.2. Using the Initial Shell Design as a Shell
	4.5.3.3. Compiling the Design and Producing a new N3000 FPGA Bitstream
	4.5.3.4. Verifying Timing Constraints are Satisfied

	5. Capturing Signals in AFU with Signal Tap
	5.1. Adding Signal Tap to the Design
	5.2. Loading FPGA Image
	5.3. Set Up Connections
	5.4. How to Exit from the Debug Session
	5.5. Troubleshooting Remote Debug Connections

	6. Document Revision History for the Accelerator Functional Unit Developer Guide: Intel FPGA Programmable Acceleration Card N3000 Variants

